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Abstract

A high-resolution global atmospheric model is used to disentangle the relationship

between African easterly waves (AEWs) and Atlantic tropical storms (TCs) from

the large-scale environmental factors that may obscure their connection. Since the

two most cited references on AEW interannual variability in relation to TC activity

draw conflicting conclusions about the historical relationship, and the AEW counts in

each study do not show agreement on historical variability, novel analysis procedures

are developed to produce consistent AEW and TC count statistics for the historical

record using reanalysis products. This reanalysis-derived historical record is used

to legitimize the model for the study of AEWs, which is subsequently utilized to

investigate the relationship between AEWs and TCs.

The internal variability of the relationship between AEW and TC count, includ-

ing the sensitivity to ENSO phase and annual trends, and the interplay between

environmental factors, AEW activity, and TC activity are probed using three sets

of simulations: 1) climatological simulations, consisting of three ensemble members

forced with historical seasonally and annually varying SST; 2) simulations with in-

terannually invariant forcing, including a control simulation with climatological mean

SST and a perpetual La Niña simulation with composite SST from strong La Niña

years; 3) perturbed simulations, in which the large-scale environment is drastically

altered through the manipulation of African albedo.

Since variability exists in AEW count that is unexplained by known indicators of

large-scale environmental favorability, across all simulations and multiple timescales,

it is unlikely that the ubiquitous covariance between AEW and TC count is simply a

response to environmental factors. The statistically significant correlations between

AEW and TC statistics suggest that AEW variability accounts for a portion of the

observed variability in TC count not due to known environmental factors, since there

is unexplained variance in AEW count, and both individual years and aggregated
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model runs with more (fewer) AEWs also tend to have more (fewer) TCs. It is

argued that while half of the covariance between AEW and TC count interannually is

mediated by the large-scale environment, the other half can be attributed to stochastic

AEW variability.
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Chapter 1

Introduction

1.1 Motivation

Most hurricane damage in the United States is owed to the rare and often diffi-

cult to predict events in which high intensity tropical cyclones (TCs) make landfall

(Landsea, 1993; Emanuel, 2011). While much of the year-to-year variance in total

hurricane activity can be anticipated given adequate information about the large-scale

environment (Emanuel et al., 2008; Knutson et al., 2007), storm intensity, duration,

frequency, and thus destructive potential varies with genesis location (Kossin et al.,

2010). Kossin et al. (2010) found that storms that form in the region sensitive to

African Easterly Wave (AEW) fluctuations tend to be very intense, long-lived, and

destructive, so there is cause to believe that AEW-spawned tropical storms are of

special import to the United States.

Avila et al. (2000) separated “African years” from “non-African years” based on

the percentage of storms that originated from AEWs for the 30-year period from

1967-1997 and found that the destructive potential of storms is larger for African

than non-African years. Furthermore, Landsea (1993) found that over 80% of intense

hurricanes originate from AEWs, compared to 60% of tropical storms and moderate

hurricanes. Unfortunately, AEW variability is poorly understood and the extent to

which AEW variability impacts hurricane activity is debated in the literature, as some
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authors have suggested a correlation exists between AEW activity and Atlantic TC

activity (Thorncroft and Hodges, 2001; Frank and Roundy, 2006; Hopsch et al., 2007;

Belanger et al., 2010), while others found little to no independent correlation (Avila

et al., 2000; Goldenberg et al., 2001; Caron and Jones, 2011).

This dissertation does not attempt to predict AEW variability or to understand

the mechanisms of tropical cyclogenesis, but instead focuses on constraining the

extent to which the nature of Atlantic TC activity is dependent on the variability

of AEWs. Others have tried to address this issue, but previous attempts have been

restricted to historical analyses, reanalyses, or limited regional modeling studies,

and have been unable to cleanly disentangle the relationship between AEWs and

TCs from the large-scale environmental factors that often obscure the role of AEWs

(see Section 1.2.2). With the recent developments in high resolution atmospheric

models producing reliable TC simulations (see Sections 1.2.3), it is now possible

to 1) establish previously unavailable information on the internal atmospheric vari-

ability of the AEW-TC relationship by comparing multiple model realizations with

observed sea surface temperature (SST) used as the lower boundary condition, 2)

remove annual SST variations to explore the sensitivity of AEW and TC activity

to altered seasonally-varying SST, and 3) perturb the large-scale environment be-

yond the realm of the present day climate to examine the relationship between the

environment, AEW activity, and TC activity. In order to understand whether TCs

and AEWs simply respond to the same large-scale environmental factors or AEWs

take a more active role in TC variability, this work endeavors to isolate and exam-

ine the importance of AEW activity using a TC-permitting global atmospheric model.
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1.2 Past Work

This section reviews relevant past literature, beginning with what is known about

AEWs themselves, including their observed characteristics as well as the current

understanding of their dynamics (Section 1.2.1). Next, past works exploring the

potential connections (or lack of connection) between Africa, AEWs, and TCs are

considered (Section 1.2.2). This is followed by an overview of TC-permitting mod-

els (Section 1.2.3), beginning with a discussion of the strengths and limitations of

high-resolution atmosphere-only models in general, and then highlighting successful

past studies of TCs using the National Oceanic and Atmospheric Administration’s

(NOAA) Geophysical Fluid Dynamics Laboratory’s (GFDL) High Resolution Atmo-

spheric Model (HiRAM).

1.2.1 Properties and Variability of AEWs

African Easterly Wave Characteristics

The characteristics of AEWs have been examined with a variety of methods, including

composite techniques (Carlson, 1969b; Reed and Recker, 1971; Burpee, 1974; Reed

et al., 1977; Norquist et al., 1977; Thompson et al., 1979; Duvel, 1990; Diedhiou

et al., 1999; Kiladis et al., 2006; Aiyyer and Thorncroft, 2006; Hopsch et al., 2010;

Peng et al., 2011; Agudelo et al., 2011), spectral techniques (Burpee, 1972, 1974;

Albignat and Reed, 1980; Nitta and Takayabu, 1985; Reed et al., 1988b; Lau and

Lau, 1990; Duvel, 1990; Thorncroft and Rowell, 1998; Pytharoulis and Thorncroft,

1999; Mekonnen et al., 2006; Frank and Roundy, 2006), and synoptic case studies

(Carlson, 1969a; Frank, 1970; Reed et al., 1988a; Avila and Clark, 1989; Avila and

Pasch, 1992; Pytharoulis and Thorncroft, 1999; Avila et al., 2000; Karyampudi and

Pierce, 2002; Berry and Thorncroft, 2005; Ross and Krishnamurti, 2007; Zawislak and

Zipser, 2010; Bain et al., 2011), using datasets from observations, field campaigns,
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operational analyses, reanalysis products, and modeling techniques. A cursory review

of selected past studies is provided in this section.

AEWs form over tropical Africa and then propagate westward into the open At-

lantic. The first systematic study of AEWs utilized synoptic analysis of early satel-

lite images and rawinsonde data (Carlson, 1969a,b), finding a wavelength of 1300

mi (about 2000 km), a period of 3.2 days, and a westward speed that varied from

12 to 20 kt (about 6 to 11 m s−1), but the source region of the disturbances was

not determined. Burpee (1972, 1974) went on to identify a mid-tropospheric easterly

jet as an important player in the origin of the disturbances, using both statistical

and compositing methods to uncover a horizontal wavelength of 3100-3800 km and a

period of 3-5 days.

The extensive observational program GATE (GARP Atlantic Tropical Experi-

ment) was launched in the mid-1970s, providing temporally and spatially rich data

from the AEW region of interest for the first time and corroborating previous esti-

mates of wavelength and phase speed. GATE began in June of 1974, included three

observing periods of three weeks each, and covered a large experimental area from

10◦S to 20◦N and 100◦W to 60◦E by coordinating both ship and land observing net-

works (Kuettner, 1974). Several authors presented summaries of observations from

GATE (Reed et al., 1977; Norquist et al., 1977; Thompson et al., 1979; Greenfield

and Fein, 1979; Albignat and Reed, 1980), with a general consensus that AEWs have

a wavelength between 2000 and 4000 km, an easterly phase speed of about 8 m s−1,

and are typically found around 15◦N. Using the GATE dataset and a compositing

method, Reed et al. (1977) found that the wavelength and period of AEWs is longer

over land (2700km and 3.7 days) than over the ocean (2200km and 3.2 days), but the

wave speed is about the same in both regions.

GATE remains a landmark field campaign and has shaped the modern under-

standing of the general structure of AEWs, but questions on the difference between
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developing and non-developing AEWs remained. The aim of the JET2000 project

(Thorncroft et al., 2003) was to address unanswered questions on AEW evolution

and propagation. Unfortunately, JET2000 lasted less than a week (in comparison

with 100 days of GATE), and although it was launched during the climatologically

active period during late August, conditions were markedly drier and AEWs were

weaker and less coherent than had been hoped. The next major campaign took

place in 2006, the downstream extension of the international African Monsoon Mul-

tidisciplinary Analyses (AMMA) experiment, the National Aeronautics and Space

Administration (NASA) AMMA (NAMMA) (Zipser et al., 2009). NAMMA endeav-

ored to address the questions of which AEWs become TCs and what role the Saharan

Air Layer (SAL) plays, collecting extensive data on seven AEWs, two that developed

into TCs, three that bore some connection to future TCs but not as cleanly, and two

that never developed beyond the wave stage.

Beyond satellite observations and field campaigns, studies examining operational

analysis (Nitta and Takayabu, 1985; Reed et al., 1988a,b; Duvel, 1990; Lau and Lau,

1990; Pytharoulis and Thorncroft, 1999; Thorncroft and Hodges, 2001; Karyampudi

and Pierce, 2002; Fink and Reiner, 2003; Berry and Thorncroft, 2005; Ross and Kr-

ishnamurti, 2007; Peng et al., 2011) and reanalysis products (Diedhiou et al., 1999;

Fink et al., 2004; Matthews, 2004; Chen, 2006; Kiladis et al., 2006; Mekonnen et al.,

2006; Hopsch et al., 2007; Fink et al., 2010; Hopsch et al., 2010; Leroux et al., 2010;

Agudelo et al., 2011; Ventrice et al., 2011) also provide insight into AEW structure

and dynamics. While resolution is not generally sufficient to shed further light on

the wave characteristics discussed above, select reanalysis and operational analysis

studies are discussed further in the following section in the context of wave dynamics,

where they are more apt to aid our understanding.

Finally, many idealized modeling studies have examined the structure and lifecycle

of AEWs. Hall et al. (2006) provided a useful summary table of AEW characteristics
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from previous idealized studies (Rennick, 1976; Simmons, 1977; Mass, 1979; Kwon,

1989; Chang, 1993; Thorncroft and Hoskins, 1994a,b; Thorncroft, 1995; Paradis et al.,

1995; Grist et al., 2002), in which maximum wind speeds range from 10 to 23 m s−1,

growth rates range from 0.25 to 0.88 day−1, periods range from 2.2 to 5.3 days,

wavelengths range from 2000 to 3900 km, and phase speeds ranged from 7.5 to 15.8

m s−1.

There is some debate in the literature about interannual variability in AEW fre-

quency. Avila et al. (2000) compiled thirty-one years of operational data (1967-1997),

and while they noted variation from year to year in AEW count, they argued that the

variation is “probably not significant” and might be due to changes in observational

methods. In an earlier work Avila and Clark (1989) went as far as to claim there has

been an “almost constant number of African waves per year,” while on the other hand

several studies claim that there has been “marked interannual variability” in African

Easterly Wave activity (Thorncroft and Rowell, 1998; Thorncroft and Hodges, 2001;

Hopsch et al., 2007). The interannual variability of AEW frequency is discussed fur-

ther in the context of its potential impact on the frequency on TCs in Section 1.2.2

and the datasets published by Avila et al. (2000) and Thorncroft and Hodges (2001)

are revisited in Section 3.1.

The African Easterly Jet and Wave Dynamics

Using early upper air data, Burpee (1972) was the first to show that AEWs are

associated with a midtropospheric easterly jet in the baroclinic zone of the Sahel

(apparent in Figure 1.1 at 600mb around 15◦N), and he further showed that this

jet satisfies the Charney and Stern (1962) instability criterion. Burpee (1972) also

found that perturbations (AEWs) forming along this jet undergo mixed baroclinic-

barotropic wave growth (with horizontal and vertical zonal shear acting as equal

sources of energy) and are unlike typical tropical disturbances, which he attributed
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Figure 1.1: Reproduced from Burpee (1972), meridional cross-section at 5◦E of zonal
wind averaged for August. The 600mb easterly jet at about 15◦N with a peak strength
of 12-15 m/s is referred to as the African Easterly Jet by both Thorncroft and Hoskins
(1994a) and Burpee (1972), and will be referred to as AEJN throughout this paper.
The 200mb jet closer to 10◦N is identified as a remnant of the Indian monsoon jet by
Burpee (1972), is referred to as the Tropical Easterly Jet by Thorncroft and Hoskins
(1994a), and will be referred to as AEJS throughout this paper.

to the fact that the monthly mean surface temperature of North Africa changes by

10◦C in only 10◦ of latitude. The jet from whence AEWs come is often referred to

as the African Easterly Jet (AEJ), although this can be a bit misleading, as modern

analysis has revealed two distinct latitudes of AEW formation (Nitta and Takayabu,

1985; Reed et al., 1988a; Lau and Lau, 1990; Ross, 1991; Thorncroft and Hoskins,

1994a; Thorncroft and Hodges, 2001; Fink and Reiner, 2003; Fink et al., 2004; Chen,

2006; Hopsch et al., 2007; Ross and Krishnamurti, 2007; Chen et al., 2008).

Burpee (1974) noted that in a general sense, the vertical structure of the waves

varies such that the meridional wind tilts in the opposite direction to the mean zonal

shear, consistent with positive baroclinic energy conversion. This point was later

nuanced by Reed et al. (1977) and Albignat and Reed (1980), who found similar

structure at 15◦N, but found less vertical tilt equatorward. Thorncroft (1995) suggests

that this may be due to weaker baroclinicity and stronger latent heating effects at

lower latitudes.

7



Revisiting the plot of the meridional cross-section of zonal wind at 5◦E from

a typical August from Burpee (1972), Thorncroft and Hoskins (1994a) make the

distinction between what they referred to as the “African Easterly Jet” or AEJ and

the “Tropical Easterly Jet” or TEJ (see Figure 1.1). The northern track, which

Thorncroft and Hoskins (1994a) labeled the AEJ and will henceforth be called AEJN,

consists of the types of eddies with the characteristic ascent of warm and dry air

over surface troughs as are commonly found in arid zones (Lau and Lau, 1990).

On the other hand, the southern storm track, which coincides with the latitude of

the TEJ from Thorncroft and Hoskins (1994a) and will henceforth be called AEJS,

is associated with moist convective systems and coincides with the climatologically

rainy zone (Lau and Lau, 1990). Disturbances from these two regions are known

to interact and sometimes merge in the Atlantic (Reed et al., 1977; Thorncroft and

Hoskins, 1994a; Ross and Krishnamurti, 2007).

AEWs often have complicated structures, sometimes being multicentered, with

one low-level circulation center to the north and another mid-tropospheric center

to the south (Reed et al., 1977; Pytharoulis and Thorncroft, 1999). Using a manual

method to identify and track AEWs for 1998 and 1999 in ECMWF analysis, Fink and

Reiner (2003) found that only 12 of 81 “AEWs” over Africa were not accompanied

by a second vorticity center. Fink et al. (2004) coined the term “simultaneous twin

vortices” to describe these pairs, and revisited the GATE period through ERA-40 to

focus on the dynamics of waves propagating along AEJN. They found that AEWs on

the northern track are almost always accompanied by an AEW on the southern track

for at least part of their lifetime, and that during the GATE period only 2 out of 18

pairs of AEWs merged.

In contrast, Chen (2006) found a population ratio of 2.5 northern to 1 southern

AEW in an analysis of ECMWF reanalysis from 1991-2000, but the tracking method-

ology, although still manual, differed from that of Fink and Reiner (2003). Looking
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closely at the two years the studies have in common (1998 and 1999), the reported

counts cannot easily be reconciled. Fink et al. (2004) found 36 (32) northern (south-

ern) AEWs in May-October 1998 and 41 (41) northern (southern) AEWs in 1999,

and through analysis of synoptic maps the authors argued that the northern and

southern waves are usually coherent features. Chen (2006) found 38 (8) northern

(southern) AEWs in June-September 1998 and 31 (16) northern (southern) AEWs in

1999, concluding that the two types of waves seem to be independent of each other.

How one defines an AEW and how the line is drawn between waves associated with

the northern or southern storm track has a strong effect on the conclusions drawn.

While there is agreement in the literature that the AEJN and AEJS are distinct

(although not necessarily independent) over land, whether they “merge” over the

ocean is debated and in some ways is a semantic argument. Some authors concluded

that the jets themselves essentially merge over the open ocean (Reed et al., 1988b;

Duvel, 1990), but Nitta and Takayabu (1985) found that although the waves following

the two tracks seemed to be coupled and individual disturbances do at times merge,

there was no merger of the two tracks, and waves from AEJS propagated farther into

the Atlantic. Ross and Krishnamurti (2007) found that mergers of vorticity centers

occur but are not common, and more often the tracks of AEWs tend to converge to

a similar latitude without the individual vorticity centers actually merging.

There are also notable differences between AEW growth and development over

land and over the ocean. From composite analysis from the GATE dataset (Reed

et al., 1977), Norquist et al. (1977) first suggested that diabatic effects may play

an important role in strengthening AEWs over land in west Africa, but not over

the open ocean. Thompson et al. (1979) asserted that over the ocean, AEWs grow

through barotropic energy conversion and are actually weakened by baroclinic energy

conversion and latent heat release. However, as Albignat and Reed (1980) found,

AEWs grow primarily over land, with the principal growth region being well inland
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(0-10◦E) and a secondary growth region present near the coast, so by the time waves

reach the western coast of Africa, nonlinear effects have likely tapered.

In idealized studies of the linear instability of the AEJ, Thorncroft and Hoskins

(1994a) and later Paradis et al. (1995) found that without diabatic effects, AEWs are

dominated by barotropic energy conversions, so they concluded that latent heating

increases the baroclinic relative to barotropic energy conversion in AEW formation

and growth, and thus diabatic effects are important in determining synoptic structure

of AEWs. In a follow-up nonlinear lifecycle study, Thorncroft and Hoskins (1994b)

confirmed that AEWs are initially fueled by barotropic energy conversion and later

grow through baroclinic energy conversion.

Latent heating may not only be important in influencing the growth and synoptic

structure of AEWs—there is some suggestion that localized latent heating in the

entrance region of the AEJ may serve to initiate disturbances downstream (Berry

and Thorncroft, 2005; Mekonnen et al., 2006; Thorncroft et al., 2008). Along with

latent heating, Leroux et al. (2011) suggest that there may also be remote dynamical

precursors. Hall et al. (2006) first put forward the notion that AEW-formation may

require a finite amplitude trigger, because they found that even a low level of surface

damping has a stabilizing effect in idealized simulations, and thus the AEJ may be

stable or only weakly unstable. The findings of Hsieh and Cook (2008) support the

idea that jet instability is not sufficient to induce significant convection, so it is likely

that the jet sustains waves in their decaying stage but is unable to initiate waves

without some kind of convective precursor. This so-called “trigger hypothesis” has

been studied as an alternative to the classical explanation that AEWs result from the

AEJ itself being unstable, but Leroux and Hall (2009) found that even if one assumes

a finite amplitude precursor is required, AEW formation is still extremely sensitive

to intraseasonal variations in the AEJ itself.
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While AEWs weaken the AEJ by fluxing easterly momentum away from the jet

(Thorncroft and Hoskins, 1994a), diabatically forced meridional circulations, namely

dry convection in the Sahara and moist convection in the intertropical convergence

zone (ITCZ), are thought to maintain it (Karyampudi and Carlson, 1988; Thorncroft

and Blackburn, 1999). Cook (1999) posits that the AEJ forms over West Africa as

a result of strong meridional soil gradients, because in a series of general circulation

model (GCM) experiments, positive temperature gradients associated with solar ir-

radiation, SSTs, or clouds were not large enough to produce an easterly jet without

realistic soil moisture gradients. Although it is clear that the AEJ and AEWs are

dynamically linked, Hsieh and Cook (2005) found that AEW generation may be more

dependent on the strength of the ITCZ than the strength of the AEJ. The relationship

between the AEJ and AEWs is rather complicated, and this is taken a step further

in the next section in considering how TCs fit into the picture.

1.2.2 Connections between Africa, AEWs, and TCs

By the late 1960s it was already clear that many hurricanes and tropical storms

develop from African disturbances (Carlson, 1969a). Unfortunately, the question of

whether the count of AEWs varies substantially interannually is somewhat unsettled

(see Section 1.2.1), let alone the question of whether any AEW variability might af-

fect TC variability on seasonal or interannual scales. Some authors maintain that

there is no independent connection between AEW variability and TC variability, oth-

ers suggest an indirect connection (e.g., subject to large-scale environmental factors

or mediated by African rainfall variability), and still other authors claim a direct

connection between AEW and TC variability.

Rather than looking at aggregate interannual variability, some studies emphasize

the importance of the structure or intensity of individual AEWs (Kwon and Mak,

1990; Zipser et al., 2009; Zawislak and Zipser, 2010; Hopsch et al., 2010; Agudelo
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et al., 2011; Peng et al., 2011), but this dissertation is not framed in terms of isolating

differences between developing versus non-developing AEWs and so these issues are

not addressed in detail here. The idea that AEW intensity might be more important

than frequency is consistent with the “finite-amplitude precursor idea” of Emanuel

(1989), but while an individual AEW’s structure or intensity may impact its ability

to develop into a TC, the focus of this dissertation is on addressing the influence

AEWs have on TC activity in an aggregate sense.

There is also some debate as to which or whether both AEW storm tracks (AEJN

and AEJS) have a strong connection to Atlantic TC formation, but part of the discrep-

ancy comes from accounting differences in discerning between northern and southern

waves and whether one counts the percentage of TCs that formed from AEWs or

the percentage of AEWs that become TCs. Thorncroft and Hodges (2001) found

that AEWs from the southern storm track tend to make the largest contribution

to hurricane formation. On the other hand, Chen et al. (2008) found that in their

analysis of 1979-2006 reanalysis products, northern AEWs seed 32% of Atlantic TCs,

while southern AEWs seed 26%, but given the 2.5:1 population ratio of northern to

southern AEWs found in that dataset (Chen, 2006), the conversion rate of southern

AEWs to tropical cyclones is twice as effective as that of their northern counterparts.

Finally, Fink et al. (2004) found that most AEWs come in pairs, which would make

the above distinction moot to some extent. Regardless, Kossin et al. (2010) explained

that disturbances traveling along the northern storm track are less effective at initi-

ating cyclogenesis, because they need to make it farther west before intensifying and

are thus more likely to encounter hostile environments before developing. In support

of the idea that fewer northern AEWs have the chance to initialize cyclogenesis, Hop-

sch et al. (2007) noted that about 75% of the southern AEWs continue to the main

development region (MDR), but only about 20% of northerly AEWs make it.
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Setting the details of structure, intensity, and type (northern or southern) aside,

oft-cited opposition to the potential connection between AEW and TC variability was

put forth by Avila (Avila and Clark, 1989; Avila and Pasch, 1992; Avila et al., 2000).

Avila’s historical tabulations of manually tracked tropical systems have shown that

“African years” (years in which at least 70% of TCs originated from AEWs) have a

higher destructive potential than “non-African years” (in which no more than 50%

of TCs originated from AEWs). Despite a standard deviation of 12% of the average

value in May-November AEW count for 1967-1997 (see Section 3.1.1), the authors

maintain that the AEW count remains functionally constant from year-to-year. Based

on this supposition, Avila et al. (2000) argue that the large-scale environment must

play the most important role for storm development, since the number of AEWs

remains fairly constant from year-to-year and non-African years are anecdotally found

to correspond with strong El Niño episodes, which provide a hostile environment and

do not permit AEWs to grow. That is, the number of storms developing from AEWs

varies drastically, but since the authors believe that the number of AEWs does not,

the number of AEWs must be unrelated to the number of TCs that ultimately form.

The data on which this argument is based is revisited in Section 3.1.1.

Caron and Jones (2011) also concluded that large-scale environmental factors are

more important than AEWs in determining how many TCs originate from African

disturbances, but not because AEW activity levels are constant. Caron et al. (2010)

and Caron and Jones (2011) extended a Canadian regional model to the tropics, and

in tuning various model parameters (e.g., resolution, downscaling technique, lateral

boundary conditions, regional domain size) they noted variations in both AEW and

TC activity in the Atlantic. While Caron et al. (2010) found that it is essential to

capture the frequency and intensity of AEWs in order to simulate TC activity in

the MDR, in a follow-up study Caron and Jones (2011) concluded that the potential

correlation between AEW and TC activity could not be disentangled from changes in

13



genesis potential index (GPI) in the MDR. They instead ascribed coincidental varia-

tion in AEW activity and TC activity to differences in the large-scale environment,

specifically high mid-tropospheric humidity creating an environment more favorable

for moist convection. Furthermore, in simulations with reduced AEW activity, Caron

and Jones (2011) did not see a reduction in the total number of TCs so much as a

shift in the dominant region of cyclogenesis, namely from the MDR to the subtropics.

Aside from SST influences in general, some authors have suggested that the SAL

and the Madden-Julian Oscillation (MJO) also supersede the importance of AEW

variability. Dunion and Velden (2004) found that the SAL has a stabilizing effect due

to enhanced vertical wind shear and warm dry air, which may inhibit the growth of

the many TC “seedlings” (i.e., AEWs). Ventrice et al. (2011) found that the MJO

seems to modulate AEW activity as well as TC frequency. However, they posit that

the MJO might modulate tropical cyclone activity by first modulating variability

in AEWs as well as large-scale environmental impacts, concluding that the MJO

influences AEW activity directly by enhancing or suppressing convection locally over

Africa as well as altering characteristics of the AEJ.

There is some suggestion in the literature of another indirect indicator of an AEW-

TC relationship, evident in African rainfall statistics. Thorncroft and Rowell (1998)

noticed marked interannual variability in AEW activity that is positively correlated

with seasonal mean rainfall in the Guinea Coastal region in a GCM with realistic

interannual seasonal rainfall variability. Through dry linear instability calculations,

Grist et al. (2002) confirmed that the basic state of composite winds from wet years

compared with dry years results in a shift in the preferred strength and period of

AEWs. In the 1990s several authors noted a strong correlation between African rain-

fall and TC activity (Landsea and Gray, 1992; Goldenberg and Shapiro, 1996), so

taken together with the notion that AEWs and African rainfall are related, this could

be interpreted as evidence of a link between AEWs and TCs. On the other hand,
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Thorncroft and Hodges (2001) did not find a simple relationship between AEW vari-

ability and West Sahel rainfall variability, and starting in the mid-1990s, it seems that

the correlation between African rainfall and TCs also began to deteriorate (Aiyyer

and Thorncroft, 2006; Fink et al., 2010).

Aiyyer and Thorncroft (2006) examined the relationships of the El Niño-Southern

Oscillation (ENSO) index and Sahel precipitation with Atlantic shear, finding the

ENSO-shear correlation to have strengthened since the mid-1990s but the Sahel-shear

correlation to have weakened. Empirical orthogonal function (EOF) analysis of the

Atlantic shear shows interannual variability (the first EOF) to be highly correlated

with ENSO, while multidecadal evolution (the second EOF) is correlated with Sahel

precipitation. Both EOFs explain about 16% of the variability of TC activity in the

MDR. Fink et al. (2010) found that the correlation between West African precipi-

tation and overall TC activity in the Atlantic is weaker in years when the MDR is

more conducive to development. They speculated that SST variability can supersede

the impacts of African rainfall, but when conditions in the MDR are marginal, the

amplitude of AEWs and degree of organization becomes critical.

Thorncroft and Hodges (2001) claimed that there is a direct correlation post-

1985 between AEW activity and Atlantic TC activity, but this is based on a “visual

inspection” of somewhat limited data. They suggested that TC activity may be in-

fluenced by the number of AEWs with significant low-level amplitudes that leave

the West African coast, not simply by the total number of AEWs, so they counted

positive relative vorticity centers leaving the coast of Africa in May through October

in ECMWF analyses. Hopsch et al. (2007) extended this work from 20 (1979-1998)

to 45 (1958-2002) years using ECMWF reanalysis and found that the positive corre-

lation Thorncroft and Hodges (2001) had found is not significant on an interannual

timescale.
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Like Thorncroft and Hodges (2001), Hopsch et al. (2007) kept track of AEW

storm tracks (diagnosing and tracking coherent structures in the vorticity field), but

also considered synoptic AEW activity (diagnosed with 2-6 day filtered meridional

wind variance at 850 hPa). While the storm track measure does not correlate with

TC activity on a year-to-year basis, there is correlation in low-frequency variability.

The authors did find strong correlation between TC interannual variability and the

synoptic measure. These studies are revisited briefly in Sections 3.1.2 and 3.1.3.

There is further support for a direct relationship between AEW and Atlantic

TC interannual variability from both observational evidence and modeled variability.

Using composite spectral analysis of outgoing longwave radiation (OLR) in a global

study of tropical waves of various temporal and physical scales (Rossby-gravity waves,

tropical depressions-type or easterly waves, equatorial Rossby waves, Kelvin waves,

and the MJO), Frank and Roundy (2006) found that cyclogenesis coincides with

above average AEW activity. Belanger et al. (2010) developed a monthly forecast

system and found that part of the model skill comes from correctly capturing the

frequency of AEWs–25% of the variance in TC activity predicted is associated with

the intraseasonal variability of the frequency of AEWs.

The results of these past works highlight the strong sensitivity to the diagnostic

method for determining AEW activity. Additionally, historical analyses only provide

fairly short climatologies and do not provide a very clean sense of the “spread” or

natural variability. While the relationship between African precipitation, AEWs, and

TCs is anything but simple, the goal of this dissertation is to determine the extent

to which AEW activity itself affects TC activity, beyond changes in the large-scale

environment, in a TC-resolving model.
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1.2.3 TC-Permitting Models

Various types of “TC-permitting models,” including regional scale (Knutson et al.,

1998, 2008; Emanuel et al., 2008; Garner et al., 2009; Caron et al., 2010; Caron

and Jones, 2011) as well as global scale models (Vitart et al., 1997; Vitart, 2006;

Oouchi et al., 2006; Bengtsson et al., 2007a,b; LaRow et al., 2008; Gualdi et al.,

2008; Sugi et al., 2009; Satoh et al., 2011; Held and Zhao, 2011; Murakami et al.,

2012; Manganello et al., 2012), have gained popularity in recent years, owing to their

utility in TC-related research areas from seasonal forecasting to global climate change.

Some studies have included coupling with an ocean (Vitart, 2006; Gualdi et al., 2008),

but due to computational costs most are atmosphere-only. Since this dissertation

itself employs a high-resolution atmosphere-only model, this section begins with a

discussion of the known strengths and limitations of such models in general, followed

by a summary of past studies of TCs using GFDL’s HiRAM in particular.

Fidelity of High-Resolution Atmosphere-Only Models

High-resolution atmosphere-only models (AGCMs) are an unmatched tool, allowing

for the manipulation and disentanglement of complicated factors that can obscure

understanding of TC variability. The ability to produce multiple model realizations

also provides a sense of the natural variability of the climate system that cannot be

extracted from the single realization that is the historical record. However, there are

some limitations that have been explored in past studies that must be acknowledged.

The main concern in high-resolution atmosphere-only models is the lack of

atmosphere-ocean feedback. Bender et al. (1993) explored the effects of ocean feed-

backs on an idealized TC vortex embedded in both easterly and westerly basic flows.

They found that the decrease in SST that is induced by a TC itself has a significant

impact on the ultimate storm intensity by reducing the total heat flux into the storm,

and there is more SST cooling the slower an idealized storm moves. They also found
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that ocean interaction has more limited effects on the track of the storm, but does

turn the storm more north and east in cases with weak easterly or no background

east/west flow. Schade and Emanuel (1999) corroborated that a lack of oceanic

feedback may lead to stronger storms by comparing a fully coupled axisymmetric

hurricane model to an uncoupled model with constant and horizontally uniform

SSTs, finding that SST feedback can cut the intensity of an idealized hurricane in

half compared with a storm modeled over a constant SST.

A lack of SST-feedback may have other indirect effects that influence TCs. Waliser

et al. (1999) found that when comparing simulations with a coupled slab ocean mixed

layer in the tropics to simulations forced with specified SSTs, even though the cou-

pled model produces very small SST perturbations (0.10-0.15◦C), the decoupling dulls

the intraseasonal variability of the MJO. Similarly, Douville (2005) found that the

transient response of the Indian summer monsoon in fully coupled models is not ac-

curately captured in atmosphere-only models with prescribed SSTs, and he cautioned

that the lack of SST feedback can adversely affect both intraseasonal and interannual

timescales in atmosphere-only simulations in the context of climate change time-slice

experiments. That said, Douville (2005) also noted that AGCMs can be a useful tool

for determining the extent to which SSTs contribute to atmospheric variability.

Although the lack of SST coupling may produce stronger storms (Bender et al.,

1993; Schade and Emanuel, 1999), modeled storms are known to have lower inten-

sities and wider expanse than observed storms due to the constraints of resolution

(Bengtsson et al., 2007a,b). Walsh et al. (2007) stressed the importance of resolution-

dependent criteria for TC detection if one wishes to compare simulated cyclogenesis

with climatological cyclogenesis. This is important to bear in mind when setting

thresholds to distinguish between tropical storm intensities and is taken into consid-

eration in Section 2.2.2.
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Resolution dependence plays out in another way: the parametrization of sub grid-

scale processes can influence modeled TC intensity and genesis frequency. In HiRAM

simulations, Zhao et al. (2012) found that TC frequency and intensity are sensitive

to two model parameters in particular, the horizontal cumulus mixing rate and the

strength of damping of horizontal divergence. Increasing the former, there is a sharp

increase and then decrease in global storm frequency, and a monotonic increase in

storm intensity. Increasing the latter, there is a monotonic increase in frequency with

no change in intensity. While these parameters can play a strong role in total TC

count, one hopes that holding these parameters fixed across simulations, interannual

variability and perturbations from a control case will be meaningful.

While simulations of TC intensity leave something to be desired across the board

and sub-grid-scale processes can tip the balance, there is hope that models with

unrealistic distributions of TC intensity can still produce reliable results in terms of

TC frequency (Zhao et al., 2009). As Zhao et al. (2009) suggest, the best way to judge

the value of uncoupled models in TC research is by examining the quality of their

simulated interannual variability. The following section does just that by reviewing

past studies of model TCs produced by HiRAM simulations.

GFDL’s HiRAM

The technical details of the version of HiRAM used in this dissertation can be found

in Section 2.1.2. This section focuses on the results of past TC studies using HiRAM.

Zhao et al. (2009) compared tracks, total counts per basin, and seasonal cycles

of hurricane strength storms from an ensemble of four 1981-2005 control simulations

of HiRAM forced with Hadley Centre Global Sea Ice and Sea Surface Temperature

(HadISST) dataset (Rayner et al., 2003), with observations from the International

Best Track Archive for Climate Stewardship (IBTrACS) (Knapp et al., 2010). There

are some regional discrepancies with observations, but the modeled count, seasonal
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Figure 1.2: Reproduced from Zhao et al. (2009), a comparison of observed (top) and
model-simulated (bottom) TC tracks from 1981 to 2005 using GFDL’s HiRAM forced
with HadISSTs (Rayner et al., 2003).

cycle, and interannual variability in the North Atlantic matches the observed counts

well. Figure 1.2 shows a comparison of observed tracks from 1981-2005 and model-

simulated TC tracks from one of the ensemble members for that same period.

As expected in a model of this resolution (approximately 50 km), the distribu-

tion of storm intensity is not a good match with observations, but this does not

seem to affect the fidelity of modeled hurricane frequency. The observed and model-
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Figure 1.3: Reproduced from Zhao et al. (2009), a comparison of observed (red) and
ensemble mean (blue) interannual variation in hurricane count for the North Atlantic
from 1981 to 2005 using IBTrACS observations (Kruk et al., 2010) and GFDL’s
HiRAM forced with HadISSTs to produce the integrations of four ensemble mem-
bers. The shaded area shows the simulated maximum and minimum count from the
four-member ensemble. The modeled counts are normalized by a time-independent
multiplicative factor (1.17) to match the total observed number of storms. Dotted
lines show the observed and modeled linear trends.

simulated interannual variability of hurricane count in the North Atlantic is shown

in Figure 1.3. To highlight the model’s ability to capture interannual variability, the

authors normalized the modeled counts with a time-independent multiplicative factor

(1.17) to match the total observed storm count. The ensemble mean has a correlation

coefficient of 0.83 with IBTrACs in the Atlantic, which the authors interpreted as evi-

dence that factors not transmitted through SST must not be as crucial in determining

interseasonal variability in hurricane count in the Atlantic.

Zhao et al. (2009) also went on to examine a climate change scenario, forced with

prescribed seasonally varying SST with no interannual variability. SST climate change

perturbations were obtained from coupled climate simulations and were then added to
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base climatological SST to force the atmospheric model. The authors discovered that

storm count has notable sensitivity to the choice of base climatological SST, as well as

to the differences between the SST change predicted by the various coupled climate

simulations. The authors were able to attribute these differences to differences in

Atlantic “relative SST,” defined as the average temperature in the MDR of the basin

minus the global average tropical SST. A difference of as little as 0.15◦C in relative

SST leads to a substantial difference in storm count. In other words, the authors

found that the amount of warming in the tropical Atlantic compared to the tropical

Pacific is correlated with the change in Atlantic TC frequency across the simulations.

Two additional HiRAM studies addressed the nature of shifts in TC count in

changing climates. First, Held and Zhao (2011) compared the effects of uniformly

increasing all SSTs by 2K and doubling atmospheric CO2 content, both independently

and in combination. They found that either doubling atmospheric CO2 or increasing

SST by 2 K separately each results in a 10% decrease in global TC frequency, and

a 20% decrease when the two effects are combined. Second, Zhao and Held (2012)

was an extension of Zhao et al. (2009), examining a total of ten global warming

experiments, eight using SST anomalies from different coupled models, one from

an average over 18 different coupled models, and one in which climatological SSTs

were uniformly warmed by 2 K. Although there is sizable intermodel spread in the

magnitude and sign of TC genesis frequency response to climate change, this study

provided additional support for the importance of relative SST globally (although

relative SST is a better predictor of TC count perturbations in some basins than in

others).

Finally, HiRAM has been used to answer questions of the predictability of seasonal

hurricane activity. Zhao et al. (2010) computed the global SST anomaly field for the

month of June in each year from 1982-2008 using the mean of the years 1982-2005

to define the anomaly, then integrated from June 1 through the end of December for
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each year after adding the anomaly to the climatological mean SST for each month.

Compared to the scenarios forced by observed SSTs (Zhao et al., 2009), the decline

in skill from allowing June anomalies to persist is largely attributed to missing the

seasonal evolution of relative SST. In other words, this study provides further evidence

that on both seasonal and interannual timescales, SSTs provide most of the skill in

capturing hurricane count variability.

HiRAM has proved a useful tool for many applications, successfully reproducing

the interannual variability in TC count of the past several decades (Zhao et al., 2009),

allowing exploration of potential changes in TC count under future climate scenarios

(Zhao et al., 2009; Held and Zhao, 2011; Zhao and Held, 2012), providing insight into

the types of seasonally-evolving SST patterns that are important to predict for accu-

rate seasonal forecasting (Zhao et al., 2010), and generally advancing understanding

of environmental controls on TC frequency. These characteristics make it ideal for

use in this dissertation.

1.3 Dissertation Overview

This opening chapter has provided motivation for studying the relationship between

AEWs and Atlantic TCs, summarized past work toward understanding the charac-

teristics and dynamics of AEWs and the intricate relationship between Africa and

Atlantic TCs, and asserted the relevance and past successes of TC-resolving mod-

els. The stage has been set to utilize GFDL’s HiRAM to shed further light on the

relationship between AEWs and Atlantic TCs.

Chapter 2 opens with an explanation of the experimental design in Section 2.1,

including specifications of the reanalysis products (Section 2.1.1) and model simu-

lations (Section 2.1.2). The analysis tools used throughout the study are described

in Section 2.2, including details of the diagnosis of large-scale environmental favora-
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bility using a genesis potential index (Section 2.2.1) and the method of quantifying

AEW and TC activity with a hybrid manual-automated TC-AEW tracking algo-

rithm (Section 2.2.2). The methodological choices made are justified and validated

in Section 2.3.

The core results follow in Chapters 3 through 6. First, the historical record is

revisited in Chapter 3, to clarify the relationship between AEW and TC activity.

Data from previous studies are analyzed and compared (Section 3.1), the present

tracking methodology is applied to reanalysis data to produce an updated historical

record (Section 3.2), and the past and current studies of climatological AEW data

are summarized (Section 3.3). Once the historical record is clarified, it is used to

legitimize the model for the study of AEWs in Chapter 4, exploring the reliability

of the model-produced seasonal cycle of AEW and TC count statistics (Section 4.1),

power spectra and statistical measures of AEW activity (Section 4.2), large-scale

environment (Section 4.3), interannual variability of AEW and TC count statistics

(Section 4.4), and relationship between environmental factors, AEW activity, and TC

activity (Section 4.5).

After being shown to adequately capture AEW and TC activity, in Chapter 5

the model is used to isolate the internal variability of AEW activity by removing the

effects of interannual variation in SST. The climatological simulations from Chapter 4

are briefly revisited (Section 5.1), then interannually invariant simulations are con-

sidered (Sections 5.2 and 5.3), followed by a summary (Section 5.4). In the process,

the relevance of ENSO is discussed in the context of a control simulation forced by

climatologically averaged SSTs, and an experimental simulation forced by composited

SSTs from strong La Niña years.

Next, the large-scale environment is perturbed beyond current climatological vari-

ability to examine how changes in AEW activity and overall environmental favora-

bility interact and affect TC activity in Chapter 6. This is accomplished through the

24



systematic variation of the surface albedo of Africa, the role of which is discussed

in Section 6.1. In a suite of four simulations, the albedo of Africa is prescribed as

uniform, with varying magnitude. These simulations are analyzed to help disentangle

the impacts of large-scale favorability and AEW count on TC count in Section 6.2,

and a summary of the results of the perturbed simulations is presented in Section 6.3.

The model results from Chapters 4 through 6 are considered holistically in Chap-

ter 7, to show consistency between the previous chapters and to quantify the rela-

tionship between AEW and TC count, both interannually (Section 7.1) and climato-

logically (Section 7.2). Finally, the dissertation closes with conclusions in Chapter 8,

including a summary of the key findings (Section 8.1) and recommendations for future

work (Section 8.2).
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Chapter 2

Methodology

This chapter opens with an introduction of the overarching conceptual framework of

this dissertation, and then the methodology used throughout is detailed and justified.

The goals of this study are reviewed and the overall experimental design is outlined

in Section 2.1, followed by details of the reanalysis product used to study the historical

record (Section 2.1.1) and the specifications of the model and modeling techniques

(Section 2.1.2) used to probe the relationship between AEWs and TCs. Section 2.2

provides an overview of the specific analytical techniques and tools employed, defining

the genesis potential index used to diagnose large-scale environmental favorability

(Section 2.2.1) and detailing the hybrid manual-automated tracking method used to

quantify AEW and TC activity (Section 2.2.2).

Finally, Section 2.3 provides justification for the methodological choices made,

considering the fidelity of the reanalysis selected (Section 2.3.1), the relevance of the

particular choice of genesis potential index (Section 2.3.2), and the validity of the

newly-developed tracking algorithm (Section 2.3.3).

2.1 Experimental Design

This dissertation is designed to elucidate several distinct facets of the AEW-TC rela-

tionship. The first goal, which will be addressed in Chapters 3 and 4, is to clarify the
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historical record of AEW activity and use it to legitimize the model for further study

of the AEW-TC relationship, by comparing historical model realizations against the

historical record. The former is accomplished by revisiting past studies and using

novel analysis techniques to establish a historical record of AEW and TC activity.

The model realizations are then compared with the historical record in terms of the

large-scale conditions, the seasonal cycle of AEWs and TCs, spectral measures of

AEW activity, interannual variability, and the relationship between AEWs and TCs.

Through these first two chapters of results, the second goal is also addressed:

providing evidence toward settling the debate about whether or not AEW and TC

activity are indeed historically correlated. Questions raised in Chapter 4 about the

importance of interannual variation in SST in the historical record are explored in

Chapter 5, addressing the third goal: isolating the internal variability of the modeled

AEW activity and its relationship with TC activity in the absence of large-scale

environmental differences. The fourth and final goal is to disentangle the effects

of large-scale environmental favorability and AEW activity on TC activity in more

extreme cases than the climatological record affords, by perturbing the environment

and manipulating AEW activity in Chapter 6, addressing the complex relationship

between AEWs, the large-scale environment, and TCs.

To meet these goals, the historical record as captured by reanalysis and three

separate sets of simulations are analyzed here. The technical details of the model and

the manipulation techniques used in this dissertation are spelled out in greater detail

in Section 2.1.2, but first the three central sets of simulations are described in general

terms to provide a conceptual framework.

The first set of simulations, referred to as “the climatological simulations”

throughout the rest of this dissertation, is a historical ensemble, consisting of three

ensemble members (H1, H2, and H3). Each ensemble member models the 27-year

period from 1982-2009, with observed seasonally and annually varying SSTs used as
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the lower boundary condition. Ensembles take advantage of the ability of models to

produce multiple realizations over the same time period. This expands the dataset and

provides for a better estimate of the significance of potential trends and correlations,

while also allowing quantification of the internal variability of the atmospheric system.

The climatological simulations are analyzed primarily in Chapter 4 and are revisited

in Chapter 5.

For the next two sets of simulations, collectively referred to as “the manipulated

simulations,” each set includes a control simulation along with experimental simula-

tion(s). For both of these sets of manipulated simulations, “the control simula-

tion” is a 20-year experiment forced by interannually invariant mean SSTs, averaged

from 1982-2005. In other words, the prescribed SSTs in the control vary seasonally,

but do not change from year to year. Other model parameters remain the same as

those of the climatological simulations.

This control is first paired with an experimental simulation forced with composite

La Niña SSTs (averaged for the strongest La Niña years, see Appendix B), referred to

as “the perpetual La Niña simulation” throughout the rest of this dissertation.

Aside from the change in prescribed SSTs, all other model parameters are held fixed,

and the perpetual La Niña simulation is also a 20-year experiment. The perpetual

La Niña simulation is analyzed in Chapter 5.

Finally, the third set of simulations has the same control experiment, this time

paired with four 20-year experimental simulations with uniform African albedo, num-

bered 1 through 4. Aside from the difference in African albedo, all other model pa-

rameters are the same as for the control. These are referred to as “the uniform

albedo simulations” or “the perturbed simulations” throughout the rest of this

dissertation. These simulations are analyzed in Chapter 6.
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Information about the reanalysis (Sections 2.1.1) and model (Section 2.1.2) follow,

including general specifications and details of the manipulation techniques used to

produce the suites of simulations mentioned above.

2.1.1 Revisiting AEW Historical Record Using Reanalysis

The primary reanalysis product used throughout this study is the NCEP-DOE AMIP-

II reanalysis (Kanamitsu et al., 2002), henceforth referred to as NCEP-NCAR II. This

reanalysis is an updated version of an earlier NCEP-NCAR reanalysis (Kalnay et al.,

1996; Kistler et al., 2001), and was selected due to its availability and wide use. While

still having its limitations, NCEP-NCAR II includes several key improvements relative

to NCEP-NCAR I that are especially relevant to this study. Pertinent updates and

limitations are discussed below, and the adequacy of NCEP-NCAR II for studying

AEWs is explored further in Section 2.3.1.

The resolution is the same as the original NCEP-NCAR reanalysis, with a hori-

zontal spectral truncation of T62 (i.e., 210 km at the equator), 28 vertical levels, and

6-hourly output. NCEP-NCAR II incorporates precipitation observations through

NCEP/CPC global precipitation analysis (Xie and Arkin, 1997) to improve soil mois-

ture fidelity, rather than simply using the model-generated precipitation. The desert

albedo was also improved globally using the algorithm of Briegleb et al. (1986), and

especially over the Sahara, which may have relevance for the AEJ and AEW dynam-

ics. To minimize the introduction of artificial signals due to changes in observing

systems, only the years 1979-2012 are considered (Trenberth et al., 2001). It should

be noted that additional raw observational data was added after 1993 (Kanamitsu

et al., 2002), so any trends that might surface in the data may be circumspect.
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2.1.2 Using HiRAM to Explore the AEW-TC Relationship

The version of HiRAM used in this dissertation is the same as the version used for

GFDL’s contribution to the Fifth Assessment Report of the Intergovernmental Panel

on Climate Change (IPCC AR5). This version is referred to as HiRAM2.2 and was

also used by Zhao et al. (2012), who verified that it produced TC statistics consistent

with those of earlier model versions. The technical specifications used in this study

are summarized below, followed by the details of model manipulation methods, specif-

ically, changes implemented to the prescribed SSTs as a lower boundary condition

and the African albedo.

HiRAM Specifications

HiRAM is built upon GFDL’s atmospheric model version 2.1 (AM2.1) (Anderson

et al., 2004), but with a finer resolution, a different dynamical core, modified moist

physics, and a modified convective closure. Without alterations to the moist physics

and convective closure, AM2.1 produces an excessively calm Atlantic (Zhao et al.,

2009). Some of the key features of HiRAM2.2 are detailed below.

• Dynamical Core: Uses a finite-volume core on a cubed-sphere grid topology

(Putman and Lin, 2007), which has exceptional grid uniformity and eliminates

the need for flux-form semi-Lagrangian extensions for transport processes as

well as the need for polar Fourier filtering for fast waves. Updated to improve

efficiency and stability by Zhao et al. (2012).

• Horizontal Resolution: There are 180 × 180 grid points on each face of the

cube. This means that the size of the model grid varies from 43.5 to 61.6 km

(about 0.5◦ or 50 km resolution).

• Vertical Resolution: Includes 32 vertical levels, with higher density of levels

near the tropopause than in AM2.1.
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• Cloud Scheme: Details of the convective closure and diagnostic cloud frac-

tion scheme assuming a subgrid-scale distribution of total water can be found in

Appendix A of Zhao et al. (2009). There was a minor retuning of this parame-

terization by Zhao et al. (2012) to achieve top-of-atmosphere radiative balance

after updates were made to the dynamical core.

• Land Model: Uses GFDL’s LM2 (GFDL Global Atmospheric Model Devel-

opment Team, 2004). The climatological simulations include dynamic vegeta-

tion, improved representations of vegetation reception of snow and rain, water

phase change in soil and snow pack, water storage and flow through global

river network. In the manipulated simulations, the albedo is prescribed and the

vegetation is static.

Sea Surface Temperature

For the interannually and seasonally varying climatological simulations, observed

SSTs from the HadISST dataset (Rayner et al., 2003) are used as the lower bound-

ary condition. Only the years 1982-2009 are examined here because of a potential

inhomogeneity in observations between 1981 and 1982 in the HadISST dataset.

In all of the manipulated simulations, SSTs vary seasonally but do not change

year-to-year. The control experiment for both manipulated simulation sets and all

of the uniform albedo experiments are 20-year simulations forced by climatologically

average SSTs. The average is calculated from years 1982-2005 of the HadISST dataset,

resulting in a seasonally varying climatological SSTs with no interannual variability.

The SSTs from the strongest La Niña years (1985, 1988, 1998, 1999, and 2000) are

averaged and used as the lower boundary condition for the 20-year perpetual La Niña

simulation. These years were chosen using the NOAA/NWS Cold and Warm Episodes

by Season (2014) Oceanic Niño Index (ONI) chart as a reference. Specifically, years

for which both the July-August-September ONI and August-September-October ONI
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Figure 2.1: La Niña minus climatological SSTs for the months of August through
October at 1 degree resolution, calculated using the Hadley Centre Global Sea Ice
and Sea Surface Temperature (HadISST) dataset (Rayner et al., 2003). Land is shown
in grey.

were both less than -0.5 were included in the composite. For more information on

the ENSO classification scheme used throughout this dissertation, see Appendix B.

The mean SSTs from the control simulation are subtracted from the La Niña

composite to obtain the La Niña SST anomaly. The resulting average SST anomaly

for the months of August through October is shown in Figure 2.1. The SST anomaly in

Figure 2.1 reveals characteristic La Niña features, such as cooler ocean temperatures

across the east-central equatorial Pacific.

32



Figure 2.2: Average African surface albedo for the months of August through October.

African Albedo

For simulations in the climatological ensemble, the control simulation, and the per-

petual La Niña simulation, albedo is prescribed to be realistic over Africa (GFDL

Global Atmospheric Model Development Team, 2004). The average African albedo

for the months of August through October is shown in Figure 2.2.

Figure 2.2 shows total surface albedo, i.e., the ratio of mean upward to downward

shortwave radiation at the surface, and is therefore a function of the near-infrared

(NIR) and the visible (VIS) incoming radiation and reflectance. To manipulate the

albedo for the purposes of the uniform albedo simulations, it is necessary to consider

these NIR and VIS albedo components separately.
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The NIR and VIS components of the isotropic albedo are shown separately in

Figure 2.3 for MODIS data (Schaaf et al., 2002), obtained through personal commu-

nication (Malyshev, 2014). Through visual inspection of these albedos, a ratio of 2:1

for NIR to VIS albedo appears reasonable, and is therefore used when prescribing the

NIR and VIS albedo for the uniform albedo simulations. Because approximately half

of the incoming solar radiation is visible and half is near-infrared on average, the total

albedo can be estimated from the average of the NIR and VIS albedo parameters.

Albedo parameters for the uniform albedo simulations are given in Table 2.1, and

these simulations are subsequently referenced by their “Total Albedo.”

Table 2.1: Uniform Albedo Simulation Isotropic Albedo Parameters

Simulation Isotropic VIS Isotropic NIR Total Albedo
uniform albedo 1 0.05 0.10 7.5%
uniform albedo 2 0.10 0.20 15%
uniform albedo 3 0.20 0.40 30%
uniform albedo 4 0.30 0.60 45%

For the uniform albedo simulations, the isotropic African albedo is prescribed to

be uniform over the entire continent and the land type is prescribed to be homogenous.

Because the soil albedo also has a weak dependency on the azimuth angle, the total

albedo is not completely uniform, and does vary latitudinally with the seasons (Schaaf

et al., 2002) and geographically with the variation in the diffuse to direct ratio of solar

radiation.

2.2 Analysis Tools

Two analytical tools that are used throughout this dissertation warrant an extended

introduction. First, the concept of a genesis potential index (GPI) is reviewed and

the version of GPI used throughout this work is defined in Section 2.2.2. Next, the
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method of quantifying AEW and TC activity is detailed in Section 2.2.2. For further

justification of these methodological choices, consult Sections 2.3.2 and 2.3.3.

As mentioned in Section 1.2.2, the conflicting results of past works highlight the

strong sensitivity of the inferred AEW-TC relationship to the diagnostic method and

thresholds for detecting AEW activity. A diverse array of tracking techniques have

been used in past studies, including statistical, manual, and automated algorithms,

each with its own limitations and strengths. Section 2.2.2 provides a short literature

review of these past techniques and then details the hybrid manual-automated method

used throughout this study.

2.2.1 Genesis Potential Index

Motivated by the seminal work of Gray (1979), Emanuel and Nolan (2004) presented

a genesis index, typically referred to as the Genesis Potential Index (GPI), which is

used throughout this study and given by

GPI = |105η|3/2
(H

50

)3(Vpot

70

)3

(1 + 0.1Vshear)
−2, (2.1)

where η is the absolute vorticity at 850 mb in units of s−1, H is the relative humidity

at 600 mb in units of percent, Vpot is the potential intensity in units of m s−1, and

Vshear is the magnitude of the vertical wind shear between 850 and 200 mb in units of

m s−1. The potential intensity (Vpot; Bister and Emanuel, 2002) is the theoretically

maximum wind speed sustainable given the convectively available potential energy,

and is calculated from SST, sea level pressure (SLP), and the vertical profile of tem-

perature and specific humidity at each grid point, using a publicly available script

(Emanuel, 2014).

A refinement of the index from Gray (1979), GPI was developed starting from a

large set of environmental variables that have been previously shown to have skill in
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predicting TC variability, but variables that might not have broad application beyond

the current climate conditions were avoided. The index was trained on NCEP-NCAR

reanalysis (Kalnay et al., 1996) for 1950 through 2004 using a combination of multiple

regression and common sense to select a suitable combination of predictors, combining

monthly averages of large-scale environmental indicators into one powerful index.

This index is typically averaged over some region of interest, such as an entire basin

or hemisphere, to quantify the expected level of TC activity given the environmental

parameters. Emanuel and Nolan (2004) showed that the index has skill in reproducing

monthly mean storm count in the northern and southern hemispheres, and Camargo

et al. (2007a) further detailed the development of the index and used it to determine

which environmental factors communicate the influence of ENSO on TC activity.

Since interest in creating empirical indices for genesis was revived by Emanuel and

Nolan (2004), there have been several publications that either investigate the effec-

tiveness of or attempt to improve upon this definition of GPI (Camargo et al., 2007a,b,

2009; Emanuel, 2010; Tippett et al., 2011; McGauley and Nolan, 2011; Bruyère et al.,

2012). This is an area of active research and there is not currently a consensus on

which measure of genesis potential is best suited for the purposes of this study–

diagnosing the favorability of the large-scale atmosphere. Because subsequent studies

that have attempted to improve the prediction of the likelihood of genesis begin from

GPI as defined above by Emanuel and Nolan (2004), and the index has been widely

used since its development, this incarnation of GPI is used throughout this study.

The rationale behind this decision and potential limitations are discussed further in

Section 2.3.2.

Throughout this study, GPI is calculated from interannually averaged monthly

mean reanalysis and model fields. Spatial maps of GPI are shown for various purposes

(see Figures 4.7, 5.8, 6.4, and 6.6), and averages of both GPI and its individual

components (vorticity, relative humidity, potential intensity, and shear) are taken
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over the MDR (10◦N to 20◦N; 20◦W to 80◦W) and the entire Atlantic basin (5◦N to

45◦N; between the coasts of the United States and Africa), which are used as measures

of environmental favorability.

2.2.2 Hybrid Manual-Automated Tracking Algorithm

AEWs are challenging to identify and track, because unlike TCs, there are no agreed-

upon structure or amplitude thresholds that determine whether a disturbance should

be classified as an AEW. As past studies have shown, AEWs often have complicated

structures (Pytharoulis and Thorncroft, 1999) and vary drastically in strength (Hop-

sch et al., 2007; Zawislak and Zipser, 2010), which can cause tracking algorithms

to systematically exclude certain types of AEWs (Bain et al., 2011). In examining

past studies, it is self-evident that the method of AEW tracking has an impact on

the ultimate conclusions drawn (see Sections 1.2.2 and 3.1). Past techniques used to

track AEWs fall into three categories: statistical (Burpee, 1972, 1974; Albignat and

Reed, 1980; Lau and Lau, 1990; Duvel, 1990; Thorncroft and Rowell, 1998; Diedhiou

et al., 1999; Ventrice et al., 2011), automated (Thorncroft and Hodges, 2001; Hopsch

et al., 2007; Caron et al., 2010; Agudelo et al., 2011; Bain et al., 2014), or manual

(Carlson, 1969a,b; Reed et al., 1988a; Avila and Clark, 1989; Avila et al., 2000; Fink

and Reiner, 2003; Fink et al., 2004; Chen, 2006; Ross and Krishnamurti, 2007; Kerns

et al., 2008; Zawislak and Zipser, 2010; Snyder et al., 2010).

Statistical tracking methods often utilize power spectra and band-pass filter-

ing, which aggregate and smooth results, leaving certain potentially interesting details

difficult to recover. These methods are appropriate for applications when the details

of individual waves are less important and the focus is on aggregate variability in

smooth fields. To address the questions raised in this study, it is important to more

precisely assess interannual variability, and to discern which and how many individual

AEWs develop into TCs and how many TCs were spawned by AEWs. For this reason,
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statistical approaches are not compatible with the primary goals of this study, but are

used to corroborate the fidelity of the hybrid manual-automated tracking algorithm

in Section 2.2.2.

Automated tracking methods can be appealingly efficient, but the varied char-

acteristics of AEWs cause complications. Thorncroft and Hodges (2001) were the first

to develop an automated tracking system for use with AEWs, from the feature track-

ing algorithm of Hodges (1995), to objectively trace closed relative vorticity maxima

at two atmospheric levels that exceeded a threshold value, had a lifetime of more

than 2 days, and travelled at least 10◦ zonally in reanalysis data. This method re-

sults in fewer AEWs and greater interannual variability than studies employing other

methods, e.g., Avila et al. (2000), and the authors report that it is less reliable in

interpreting AEWs with multiple vorticity centers or distinguishing between AEWs

and mesoscale convective systems.

Agudelo et al. (2011) describe a fundamentally different algorithm specifically de-

signed for AEWs. This method claims to capture all waves moving into the Atlantic

ocean, even if a wave is only evident at a single level or for a single variable. How-

ever, the algorithm’s complexity and simultaneous utilization of a large number of

fields make it unwieldy for use on typical model output. On the other hand, Bain

et al. (2014) use a manual-inspired automated method, utilizing object-oriented im-

age processing to identify propagating waves from Hovmöller diagrams in the manner

a human technician employing a manual method might. Although Bain presents a

computationally efficient and reliable method, it only provides details on AEW count

and does not track developing vorticity centers. In order to preclude false positives

when taking the AEW record and matching it with the TC record, it would be diffi-

cult to completely eliminate the human technician. Despite some promising progress

in the literature, automated tracking methods are not suitable for this study, given

the necessity of reliably matching individual AEWs with particular TCs.
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Manual tracking methods are employed almost exclusively in early studies of

AEW variability, and there has been a recent resurgence of manual methods in the

literature. Unlike feature-tracking automated analyses, early independent manual

analyses exhibit good agreement (Fink et al., 2004). Many recent manual methods

incorporate multiple steps to locate and verify AEWs, such as examining Hovmöller

diagrams of vorticity and wind anomalies, streamline maps, and band-pass filtered

relative vorticity. Because AEWs are difficult to reliably track using automated meth-

ods and the goals of this dissertation require that more information be retained than

is available from statistical methods, a manual method of AEW detection and classi-

fication is detailed below and used in this study.

Although it is argued above that manual analysis may be a necessary inconve-

nience in AEW tracking and TC-AEW matching, automated TC trackers are more

reliable, owing to the well-defined structure and intensity thresholds of TCs. An auto-

mated method has already been developed and validated for tracking TCs in HiRAM

(Zhao et al., 2009, 2012), so an automated TC-tracker is used throughout this study.

A general description of the automated TC-tracking algorithm is provided below. The

results of these two detection methods are matched a posteriori to determine which

TCs were spawned by AEWs, as well as which AEWs became TCs. This matching

procedure is also described below.

While the previous studies detailed above show that tracking methodology does

indeed have an impact on the ultimate conclusions drawn, especially when it comes

to AEW frequency, Bain et al. (2014) argue that “the self-consistency of any method

is perhaps more important than the comparison with other methods as long as the

feature characteristics are broadly similar.” For that reason, the methods detailed

below are consistently applied to all experimental cases. First the manual detection

of AEWs is described, followed by details of the automated detection of TCs, and the
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general techniques used to manually match the AEW and TC datasets. Finally, the

section closes with a case study.

Manual Detection of AEWs

A manual method is employed to detect AEWs in model simulations. Namely,

Hövmoller diagrams of average meridional winds at 850 mb, averaged from 10◦N

to 20◦N, between 15◦W and 30◦W, from June through November (i.e., hurricane sea-

son) are generated and analyzed (e.g., Figure 2.4), and when necessary, corroborated

by daily synoptic maps of 850 mb vorticity (e.g., Figure 2.5). Averaging between 10◦N

and 20◦N captures signatures of waves propagating along both the AEJN and AEJS

without double-counting potential “simultaneous twin vortices” (Fink et al., 2004).

Although averaging may cause some weak waves to be excluded from the count, previ-

ous studies have indicated a significant positive relationship between wave amplitude

and subsequent development (Thorncroft and Hodges, 2001; Agudelo et al., 2011).

In order to qualify as an AEW and be counted for the purposes of this study,

an area of positive meridional wind (the trailing edge of a wave) must be evident at

the eastern boundary of the domain of the Hövmoller diagram and propagate to the

western boundary without significant interruption. This ensures waves are of African

origin, since the coast of Africa is around 15◦W between 10◦N and 20◦N, and that

waves make it to the MDR, giving them a chance to develop into TCs, and thus

making them relevant to this study. This requirement is relaxed for marginal cases,

in which coherent waves travel out of the range averaged to produce the Hövmoller

diagrams (i.e., north of 20◦N or south of 10◦N) during part of their lifetime. So

long as a coherent positive vorticity signal is observed to propagate westward in

contemporaneous synoptic maps, these features are also counted.

Figure 2.4 is an example Hövmoller diagram generated to manually identify and

count AEWs for each year of every HiRAM model run. This particular example comes
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from 1988 in climatological simulation H2, and is representative of a typical year in

which some but not all AEWs develop into TCs, and some but not all TCs have their

origins in AEWs. The terminus of each wave counted is denoted with an open circle,

and a filled circle with yellow border denotes waves that develop into tropical storms.

The labels W1, W2, and W3 correspond to the vorticity centers labeled in Figure 2.5.

In 1988 of climatological simulation H2, there were two AEWs in June, four in

July, six in August, five in September, five in October, and two in November. A total

of eight of these twenty-four AEWs developed into tropical storms in this model year.

Automated Detection of Atlantic TCs

Output from the tropical cyclone detection and tracking algorithm described in Zhao

et al. (2009) and Zhao et al. (2012) is used with the help and permission of the authors

to identify Atlantic tropical storm origins, which are in turn used to manually diagnose

whether or not each model-produced tropical storm is AEW-induced. The algorithm

is briefly described below, but full details can be found in the original papers (Zhao

et al., 2009, 2012), including more information about sensitivity to parameter choices.

The algorithm first locates all maxima in 850 mb relative vorticity greater than

1.6×10−4 s−1 that also coincide with a local minimum in sea level pressure and a warm-

core, both located within 2◦ of each vorticity maximum. These “potential storms” are

then subjected to trajectory analysis, in which the snapshots of the features located

in the first step are linked together into trajectories. Any potential storms that do not

belong to a trajectory that lasts 3 days or longer and has a maximum surface wind

speed greater than 17 m s−1 during at least three days is deleted from the record.

Note that while the model underestimates storm winds due to its relatively coarse

spatial and temporal resolutions (see Section 2.1.2), this is compensated for by an

overestimation due to the fact that the “surface” level in the model is located higher

in the atmosphere than that used in observationally based records, such as IBTrACS

42



F
ig

u
re

2.
4:

M
er

id
io

n
al

w
in

d
s

at
85

0
m

b
,

av
er

ag
ed

fr
om

10
to

20
◦ N

,
b

et
w

ee
n

15
an

d
30
◦ W

,
fr

om
J
u
n
e

th
ro

u
gh

N
ov

em
b

er
.

A
E

W
s

ar
e

v
is

ib
le

as
ar

ea
s

of
p

os
it

iv
e

m
er

id
io

n
al

w
in

d
s

(r
ed

)
th

at
b

eg
an

at
th

e
ea

st
er

n
b

ou
n
d
ar

y
of

th
e

d
om

ai
n

an
d

p
ro

p
ag

at
e

to
th

e
w

es
te

rn
b

ou
n
d
ar

y.
P

lo
ts

li
ke

th
is

w
er

e
ge

n
er

at
ed

fo
r

ea
ch

ye
ar

of
ev

er
y

H
iR

A
M

m
o
d
el

ru
n
,

b
u
t

th
is

ex
am

p
le

is
fr

om
19

88
of

th
e

cl
im

at
ol

og
ic

al
si

m
u
la

ti
on

H
2.

T
h
e

te
rm

in
u
s

of
ea

ch
w

av
e

co
u
n
te

d
is

d
en

ot
ed

w
it

h
an

op
en

ci
rc

le
,

an
d

a
fi
ll
ed

ci
rc

le
w

it
h

ye
ll
ow

b
or

d
er

d
en

ot
es

w
av

es
th

at
d
ev

el
op

ed
in

to
tr

op
ic

al
st

or
m

s.
T

h
e

la
b

el
s

W
1,

W
2,

an
d

W
3

co
rr

es
p

on
d

to
th

e
vo

rt
ic

it
y

ce
n
te

rs
la

b
el

ed
in

F
ig

u
re

2.
5.

43



(Kruk et al., 2010). These two effects roughly cancel out, addressing the concerns

originally raised by Walsh et al. (2007) about modeled storm intensities. In this

dissertation, all intensities of cyclones detected by the algorithm are included, and

are referred to interchangeably as “tropical storms” and “TCs,” regardless of strength.

The tracker outputs details (e.g., year, month, day, hour, longitude, latitude, wind

speed, vorticity maximum, central pressure) of all remaining storms that made it

through the trajectory analysis, both as snapshots in time and also grouped together

into contiguous tracks. For the purposes of this study, the trajectory origins output

by the algorithm are utilized. In the case of the historical reanalysis, the IBTrACS

database (Knapp et al., 2010) is used instead of the automated TC detection algorithm

output. Starting from the tropical storm origins as determined by the algorithm or

IBTrACS, each vorticity center is manually tracked backward in time using synoptic

maps to determine whether or not it emerged from the coast of Africa. More details

on the matching of tropical storms and AEWs follow.

Manual Matching of AEW and TC Datasets

Given the Hövmoller diagrams from the manual AEW tracker (e.g., Figure 2.4) and

the list of tropical storm origin points from the automated TC tracker, the two

datasets are matched through manual analysis of synoptic maps of 850 mb relative

vorticity (e.g., Figure 2.5). This process is first described generally, followed by an

illustrative case study.

Synoptic maps of 850 mb vorticity are produced daily from May 1 through Novem-

ber 30 for every year of every simulation. Each vorticity map covers the region from

100 to 15◦W and 0 to 45◦N. The maps are colorized so that positive vorticities from

0 to 1.0× 10−4 s−1 are shown in increasingly dark reds, and negative vorticities from

0 to -1.0 × 10−4 s−1 are shown in increasingly dark blues. Since the threshold for

tropical storm relative vorticity in the automated tracker is 1.6 × 10−4 s−1, tropical
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storm strength vorticities present as white space, making them straightforward to

match with the automated tracker output.

Tropical storm origins diagnosed by the automated TC tracker are located on the

relevant daily synoptic map by latitude and longitude, and then are manually traced

back in time by examining and matching earlier daily synoptic maps. Each storm is

traced backward in time individually, one storm at a time. Even at times before each

feature has reached tropical storm strength, it is common to see an associated region

of positive vorticity present that is traveling westward and/or northward in time.

Whether or not a given storm has African origins (i.e., can be traced back to a

region of positive vorticity originating on the African coast) is systematically noted, as

well as the date that the storm crossed out of the domain of the associated Hövmoller

diagram (i.e., north of 20◦N or west of 30◦W) if it did indeed have African origins.

It would be exceedingly difficult to perform this type of analysis with an automated

tracker, as AEWs and the regions of positive vorticity associated with them often

do not have well-defined structures and present at various strengths and degrees of

coherence. However, it is relatively simple for a technician with a trained eye to

“follow” AEWs as they travel across the Atlantic.

The recorded date and the synoptic tracking allow an AEW associated with a

tropical storm to be marked on the relevant Hövmoller diagram as having developed

into a TC, with no ambiguity. Sometimes more than one TC originates from the

same AEW, either because the wave was multi-centered or a storm dissipated and

then re-intensified. Many of the TCs identified by the tracker did indeed dissipate and

re-intensify, but are clearly connected in time by a surviving region of positive relative

vorticity. It is not uncommon for this to happen in the real world, e.g., Humberto in

2013 (Landsea and Blake, 2014). In these cases, each intensification is counted as a

new origin point by the tracking algorithm.
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The converse, one TC originating from multiple AEWs, occurs rarely. This

presents as very occasional merger events of two separate AEWs. Mergers are readily

distinguished from multi-centered AEWs, because they initially present as temporally

separated bands of positive meridional winds on the associated Hövmoller diagram.

For consistency, AEWs are simply tallied as developing or non-developing, and

tropical storms as having African origins or not, regardless of whether there was more

then one storm or more than one associated AEW. The matching method detailed

in this section produces a dataset of monthly AEW counts, developing AEW counts,

TC counts, and African TC counts.

Case Study of Manual Matching Technique

To elucidate the procedure described above, a representative case study is presented

here. The data for this case study come from the year 1988 in climatological simu-

lation H2, a typical year in which some but not all AEWs developed into TCs, and

some but not all TCs had their origins in AEWs. Specifically, synoptic 850 mb vor-

ticity maps from August 18 through August 29, 1988 are shown in Figure 2.5. In this

period of time, two tropical storms formed: one that had African origins, and one

that originated from a mid-latitude frontal system.

The daily plots in Figure 2.5 should be read chronologically from left to right,

top to bottom (note the date in white on the upper left corner of each plot). The

850 mb vorticity over water is shown in filled color contours, with land overlaid in

gray. There are three AEWs labeled sequentially, W1, W2, and W3, each of which is

also labeled on the corresponding Hövmoller diagram from Figure 2.4.

On August 19, a wave can be seen leaving the coast of Africa, which is labeled

W1 in yellow. W1 crosses 30◦W around August 20 and moves westward for several

days, beginning to curve northward around August 26, and eventually developing

into a tropical storm on August 29, labeled TS1 in yellow. In diagnosing the origins
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of TS1, the associated positive vorticity center was tracked backward in time from

August 29, and was seen to cross 30◦W around August 20, two days after having left

Africa on August 19. Thus, TS1 is said to be of African origins and W1 is said to be

a developing AEW.

A second tropical storm forms on August 29 as well, labeled TS2 in yellow. How-

ever, following the positive vorticity center associated with TS2 back in time shows

that it did not originate from Africa. Instead, this tropical storm developed out of

a mid-latitude frontal system. As expected, tropical storms in the model that were

not seeded by AEWs owe their origins to either mid-latitude frontal systems, random

ITCZ convection that is unassociated with an AEW, or to the orographic influence

of islands.

Two other AEWs are present over the range of dates shown in Figure 2.5. A

second AEW is apparent at the coast of Africa on August 23, labeled W2 in yellow.

However, this wave curves north much more quickly, and dissipates by the end of this

time series. A third AEW (W3) forms near the end of this case study, on August 27,

crossing 30◦W around August 29. Although not shown in Figure 2.5, this wave also

eventually develops into a tropical storm.

2.3 Justification of Methodological Choices

This section provides justification for some of the methods used in this research,

comparing the selected reanalysis to an alternative in Section 2.3.1, considering the

strengths, limitations, and relevance of the particular choice of genesis potential index

in Section 2.3.2, and validating the tracking algorithm against spectral metrics and

official reports in Section 2.3.3.
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2.3.1 Reanalysis Fidelity

Although NCEP-NCAR II is an improvement over the original NCEP-NCAR reanal-

ysis (Kalnay et al., 1996), correcting several errors and incorporating upgrades, it

is self-admittedly not “a next-generation reanalysis” (Kanamitsu et al., 2002). This

might raise concerns about its adequacy in reproducing AEW statistics, which are ad-

dressed here through comparison with the ERA-Interim reanalysis (Dee et al., 2011).

ERA-Interim has the advantage of being both “next-generation” and having been

produced by an entirely separate institute. Despite known inconsistencies between

reanalyses, especially in the tropics (Trenberth et al., 2001), NCEP-NCAR II (Kana-

mitsu et al., 2002) and ERA-Interim (Dee et al., 2011) reanalyses show good agree-

ment in their representation of AEWs as measured using the present analytical tools,

specifically in Hovmöller diagrams of 850 mb meridional winds and synoptic maps of

850 mb relative vorticity.

The year 2008 was selected for a random check and detailed comparison of the

two reanalyses. Applying the tracking methodology detailed in Section 2.2.2 yields

not only identical counts for AEWs and developing AEWs, but one-to-one agreement

for individual events. As shown in Figure 2.6, there is remarkable agreement between

the two reanalyses when comparing Hövmoller diagrams. Note that climatological

simulation H1 is also shown in Figure 2.6, to demonstrate that the model produces

realistic AEW signals that resemble those of the reanalyses, but there is no expec-

tation that individual events from the model should correspond to events in history,

since the model’s atmosphere is freely evolving.

In the year examined and partially shown in Figure 2.6, there are some “marginal

cases” (see Section 2.2.2) of AEWs that are more pronounced in one of the reanalyses

than the other (e.g., in mid-July, areas of positive vorticity that seem that they may

have either dissipated or left the domain before reaching the western boundary in the

ERA-Interim plot more clearly make it to the MDR in the NCEP-NCAR II plot).
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However, in the tracking procedure implemented, such a marginal case triggers the

verification of the disturbance in synoptic maps of 850 mb vorticity, to check if a

coherent positive vorticity signal can be seen to continue to propagate westward. For

this reason, the ultimate count statistics produced by the tracking methodology as

applied to each reanalysis agree for the year 2008.

The synoptic vorticity maps may appear to show poorer agreement than the

Hövmoller plots at first glance. This is because NCEP-NCAR II has lower resolution

and thus tends to be characterized by more muted signals that are less spatially intri-

cate when compared to ERA-Interim (for an example, see Figure 2.7). However, at

least in the year 2008, the features required for AEW tracking are adequately resolved

for the purposes of this study. For example, Figure 2.7 shows the 850 mb vorticity

for August 1, 2008 in each reanalysis. In both the NCEP-NCAR II and ERA-Interim

representations, the AEW that clearly manifests at the end of July in the Hövmoller

diagrams is shown crossing 30◦W. Although NCEP-NCAR II admittedly shows less

detail in the vorticity field, it is of sufficient resolution to track a disturbance as it

propagates and determine if it is associated with a downstream TC genesis event.

It is possible that other years may fare less favorably in a side-by-side comparison,

and the rare discrepancies mentioned in Section 2.3.3, which compares the entire his-

torical record produced using NCEP-NCAR II to National Hurricane Center Tropical

Cyclone Reports, may be due to issues of resolution. Since the reanalyses were only

directly compared for one year, it would be interesting to quantify the level of varia-

tion between different reanalyses, along the lines of Schenkel and Hart (2012). Since

the agreement between NCEP-NCAR II and ERA-Interim demonstrated in this sec-

tion is adequate to inspire sufficient confidence in a historical record produced using

the present methodology applied to NCEP-NCAR II to address the goals set forth in

Section 2.1, a more detailed intercomparison of representations of AEWs in various

reanalyses is left for future work.
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(a) NCEP-NCAR II Reanalysis (b) ERA-Interim Reanalysis

Figure 2.7: Relative vorticity at 850mb on August 1, 2008, for (a) NCEP-NCAR II
Reanalysis (Kanamitsu et al., 2002), and (b) ERA-Interim Reanalysis (Dee et al.,
2011). Note: scale identical to that of Figure 2.5, i.e., dark red is 0.0001 s−1, dark
blue is -0.0001 s−1.

2.3.2 Relevance of Genesis Potential Index Choice

In general, GPI serves two purposes in this study: (1) providing an intuitive feel

for changes between different model simulations though visual inspection of spatial

plots, and (2) identifying various large-scale predictors of favorability (i.e., spatially

averaged total GPI, as well as each of its constituent components: absolute vortic-

ity, relative humidity, potential intensity, and shear) and quantifying their relative

importance in comparison to AEW count in the uniform albedo simulations. A key

reason the Emanuel and Nolan (2004) GPI is employed in this study is that these

goals do not necessarily align with those of more recently developed measures of the

likelihood of cyclogenesis. Additionally, as explained in Section 2.2.1, the index is in

wide use and most updated indices use it as a starting point.

Gray (1979) was the first to introduce an empirical index to link large-scale envi-

ronmental parameters to the likelihood of genesis, and there has been a resurgence of

interest in such indices in recent years (Emanuel and Nolan, 2004; Sall et al., 2006;

Camargo et al., 2007a,b; Bye and Keay, 2008; Emanuel, 2010; Tippett et al., 2011;
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McGauley and Nolan, 2011; Bruyère et al., 2012). Genesis potential indices have

a wide variety of contemporary uses, and have garnered attention as a proxy for

changes in the number of TCs in changing climates, specifically in situations where

only large-scale fields are available due to computational limits (Ryan et al., 1992;

Royer et al., 1998; Camargo et al., 2007b). This is not the situation here, as the model

used throughout this study reproduces realistic TC activity and variability dynami-

cally (see Section 1.2.3). Therefore it is not necessary to use an index to statistically

down-scale in order to surmise the TC frequency.

The notion of a “genesis index” may also be thought of as a useful way to diag-

nose the favorability of the large-scale environment in an average sense, to determine

whether changes observed in TC frequency are due to environmental favorability or

changes in the number of “seeds,” such as AEWs. GPI, the genesis index used here

and defined in Section 2.2.1, is well-suited to this purpose, as it has previously been

used to explore the relative importance of various environmental factors and assess

the large-scale favorability for TCs (Camargo et al., 2007a, 2009). While there have

been many proposed improvements to GPI, these improvements have not focused on

accurately diagnosing the large-scale favorability, but instead on producing reliable

estimates of TC frequency at various temporal and spatial scales, for various purposes.

In the process of tuning to these applications, such studies make assumptions that

are not necessarily relevant to this investigation, e.g., McGauley and Nolan (2011)

build in the assumption that “seeds for cyclogenesis (preexisting disturbances) remain

somewhat fixed in frequency for a given period of time and location.”

Caron and Jones (2011) used Emanuel and Nolan’s GPI to argue that changes in

TC count associated with changes in AEW activity were likely due to the large-scale

environment and not the AEWs themselves, by correlating average TC count with

GPI and its constituent components and comparing the correlation strength to that

between TC count and AEW activity as measured by Sahel wind variance (which may
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be problematic, as discussed in Section 2.3.3). In a sense, a goal of this work is to test

and reevaluate the conclusions drawn by Caron and Jones (2011), as it seems possible

their findings were influenced by their choice of metric to characterize AEW activity.

It is logical to use the same definition of GPI as Caron and Jones (2011) in reevaluating

their conclusion that AEW activity does not provide additional information beyond

the large-scale favorability, so as not to change multiple variables.

Although there are multiple reasons to use the GPI given in Equation 2.1, there

are some known limitations and shortcomings that must be considered. The original

index set forth by Emanuel and Nolan (2004) does not have meaningful dimensions

(Emanuel, 2010) and its derivation had a component of subjectivity that means it

is not reproducible (Tippett et al., 2011). Bruyère et al. (2012) found that GPI is

able to capture mean intraseasonal variation, but is much less skillful in reproducing

interannual variability. Depending on the purpose, many authors have argued that

the individual components of GPI (absolute vorticity, relative humidity, potential

intensity, and/or shear) are more or less effective, or perhaps even flawed (Emanuel,

2010; Tippett et al., 2011; McGauley and Nolan, 2011; Bruyère et al., 2012). These

conclusions may depend on differences in timescales, regions, or range of climates

considered, and examining these discrepancies warrants further study.

Limitations aside, spatial plots of GPI calculated from monthly mean data fields

capture changes between different simulations. Because there is still debate over which

parameters are most important or relevant for diagnosing the large-scale favorability

for TC formation, each component of GPI is considered separately whenever used

quantitatively, namely in Chapter 6. Consideration of each component separately

indicates that one of the most questioned parameters, relative humidity, may be the

most relevant for these simulations (see Section 6.2). This lends further credence

to the use of Emanuel and Nolan’s GPI over more recently developed indices that
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eliminate, replace, or minimize the dependence on relative humidity (Emanuel, 2010;

Tippett et al., 2011; Bruyère et al., 2012).

2.3.3 Tracking Algorithm Validation

While the tracking algorithm detailed in Section 2.2.2 is rigorously defined and re-

producible, any method that involves manual analysis is liable to have a component

of subjectivity. To provide a different perspective and an independent validation of

the tracking methodology, statistical measures of AEW activity are first considered,

and then the historical record produced here is compared with National Hurricane

Center (NHC) Tropical Cyclone (TC) Reports (NHC Data Archive, 2014).

It is worth noting that spatial maps and averages of the variance of meridional

winds at 850 mb were also considered as an alternative measure of AEW activity,

but were found to have no correlation with AEW count. Hopsch et al. (2007) also

found that 2-6 day filtered meridional wind variance at 850 mb did not compare

favorably with their measure of AEW count. For this reason, past studies that have

used variance as a measure of AEW activity should be approached with caution, and

it should be noted that simple variance does not seem to be a suitable substitute for

AEW count.

Comparing AEW Counts with Statistical Measures of Activity

Following a similar approach as Lau and Lau (1990), who calculated power spectra for

several regions of enhanced 850 mb relative vorticity variability, including the eastern

Atlantic and western Africa, it is possible to produce power spectra that characterize

AEW activity for each of the simulations considered in this study. Plots of power

spectra for individual simulations are discussed in the relevant chapters, but here two

key features of these spectra are considered as potential proxies for AEW activity:

the spectral centroid and the percent power located in the 3-5 day band.
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All spectra (see Figures 3.6, 4.3, and 6.3) are averaged interannually and pre-

sented as plots of the power density multiplied by frequency on a natural logarithm

of frequency scale, as Zangvil (1977) showed that this area-conserving transforma-

tion was the most useful for visualizing and isolating dominant scales of activity. In

this transformation, red noise appears as a horizontal line, and areas where there is

significant departure from that line signal the dominant time scales of variability.

The power spectra and the corresponding spectral statistics were calculated from

1-10 day band-pass filtered 850 mb meridional winds, averaged between 10◦N and

20◦N, near the coast of Africa (15◦W), from six-hourly data between August 1 and

October 31. The meridional winds and the region chosen were selected to be easily

physically relatable to the Hövmoller diagrams used to count AEW activity, and to

be an objective measure of the character of the variance at the coast of Africa. The

spectra are quite noisy for individual years, and were therefore averaged to produce

a characteristic spectrum for each simulation.

The spectral centroid is selected as the first characteristic property of the spectra

to be examined, because it is the weighted mean of the frequencies present in the

signal, and indicates the “center of mass” or characteristic frequency of the spectrum:

centroid (frequency) =

∑
νP (ν)∑
P (ν)

, (2.2)

where ν is the frequency, P (ν) is the power as a function of frequency, and all frequen-

cies in the 1 to 10 day bands are included in the sum. This represents the characteristic

frequency of variability, which is converted to a timescale in days for each simulation

(see Figure 2.8a), for easier interpretation of physical meaning. Decreasing centroid

(timescale) typically corresponds to increasing AEW activity.

The second spectral characteristic considered is the percent power located in the

3-5 day band. This is calculated from the area under the curve between 3 and 5
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days, divided by the area between 1 and 10 days. Figures 3.6, 4.3, and 6.3 show

this graphically, plotting νP (ν) for the entire 1-10 day band, with the 3-5 day band

highlighted in cyan. Activity characteristic of AEWs typically occurs in this band, and

the fraction of the variability serves as a proxy for the total AEW power, compared

to all scales of variability. Normalizing by total power allows for better comparison

between models and reanalyses of varying resolutions. An increase in the percent

power in the 3-5 day band typically corresponds to increasing AEW activity (see

Figure 2.8b).

Both spectral measures show statistically significant (at the 97% level or higher)

correlation with the AEW count as determined from the tracking algorithm (see

Section 2.2.2) when considering all model simulations and the reanalysis. Correlating

the count with spectral centroid yields a coefficient of determination of R2 = 0.501

(p = 0.02). The count and percent power statistic have a correlation with R2 = 0.676

(p = 0.003).

Inspecting the scatter plots in Figure 2.8, two points are obvious outliers: the

NCEP-NCAR II reanalysis, and the fourth uniform albedo simulation. Removing

these outliers, both spectral measures show statistically significant (at the 99% level or

higher) correlation with the AEW count as determined from the tracking algorithm,

with a coefficient of determination of R2 = 0.951 (p = 0.00004) for the spectral

centroid, and R2 = 0.812 (p = 0.002) for the percent power metric. The reanalysis

may be an outlier due to the difference in resolution, as shown in Figures 2.6 and 2.7

from Section 2.3.1. In the case of both outliers, one must consider the centroid and

the percent power together to make sense of the change in AEW count.

From Figure 2.6, it is clear that the reanalysis exhibits a similar timescale of

AEW variability to the model (and thus one would expect similar average count

statistics), but Figure 2.7 shows that the overall activity is weaker and less defined.

This is also apparent in the power spectrum itself–because of the coarser resolution
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in NCEP-NCAR II as compared with the model, the AEW band is less distinct (see

Figure 4.3). Since the AEW band is less distinct, the statistics are more heavily

influenced by the less relevant frequencies of variability and are therefore less reliable

indicators of AEW activity.

This is also true in the fourth uniform albedo simulation, but for different reasons.

The fourth uniform albedo simulation is characterized by strong shear over the eastern

Atlantic, which may be responsible for the overall decrease in power. Note that the

spectral centroid seems to indicate that the fourth uniform albedo simulation should

have a much higher AEW count than the third, but the percent power implies that the

fourth would have a similar but somewhat lower AEW count to the third. Using the

manual tracking methodology, the two simulations have statistically indistinguishable

AEW counts, which is not surprising when considering both the centroid and the

percent power together.

In general, the spectral centroid and the percent power metrics typically agree

on the magnitude and direction of the change in AEW activity between most model

runs, and further agree with the AEW activity as diagnosed by count. However,

the spectral centroid and the percent power each tells a slightly different story, and

both must be considered jointly to parse physical meaning. It is difficult to represent

a discrete phenomenon (e.g., event count) with continuous measures (e.g., spectral

metrics, variance), so while spectral metrics can provide insight on the nature of the

AEW activity, they do not replace count.

Confirming Historical TC Origins with Tropical Cyclone Reports

Further confirmation of the reliability of the manual-automated matching technique

can be found in a curated archive of the synoptic origins for each Atlantic TC in

the study period. The NHC has released an individual TC Report for every tropical

storm since 1958, e.g., Landsea and Blake (2014), which contains “comprehensive
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information on each storm, including synoptic history, meteorological statistics, ca-

sualties and damages, and the post-analysis best track” (NHC Data Archive, 2014).

These reports are written by individual synopticians and are not completely uniform

in methodology, but they are informed by all available operational fields and repre-

sent the authoritative account of each TC. Reports prior to 1988 are only available as

scanned images and early reports are not always precise in their usage of terminology

such as “tropical wave,” but from these records it is possible to determine storm ori-

gins, specifically, whether or not an individual TC developed from or was influenced

by an AEW.

After applying the AEW-TC counting methodology detailed in Section 2.2.2 to

the historical reanalysis, diagnosing TC origins as described, the NHC report of each

storm was reviewed to independently determine the official origins of every storm. For

the 420 events between 1979 and 2012, there were only 25 cases where the reanalysis-

derived dataset and the official reports disagreed on the origins of an individual TC.

This means there was 94% agreement between the experimental method and “objec-

tive” reality, as presented by the NHC TC Reports, for TC origins.

Of these 25 disagreements, there were a total of 14 cases where the report at-

tributed TC genesis to non-African origins, but the tracking methodology showed

some connection to an AEW. These cases are likely due to varying standards for de-

ciding whether an AEW was worth mentioning in the report, in cases such as when a

TC forms during a merger of a frontal system and an AEW. On the other hand, there

were 11 cases in which the report attributed storm genesis to an AEW, but evidence

of this was not present in the reanalysis. As mentioned in Section 2.3.1, it is possible

that some of these discrepancies could be due to NCEP-NCAR II’s low resolution.

The level of agreement does not seem sensitive to the temporal definition of the

hurricane season, with only 18 of the 322 events during August through October

between 1979 and 2012 showing disagreement, again for 94% agreement. This high
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degree of agreement lends credence to both the suitability of NCEP-NCAR II for

studying the relationship between AEWs and TCs, and to the tracking algorithm

itself.
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Chapter 3

Results: Historical Record of African
Easterly Wave Activity

As discussed in Sections 1.2.1 and 1.2.2, whether AEW count exhibits significant vari-

ation interannually has been debated, and the question of whether or to what extent

that variability might influence TC activity remains open. In order to legitimize Hi-

RAM for the purpose of studying AEW activity and variability, it is first necessary to

clarify the historical record. In this chapter, past studies of the interannual variability

of AEWs and TCs are revisited and compared (Section 3.1), then a new climatology

of AEW activity from historical reanalysis is constructed using novel methods and

compared with past studies (Section 3.2). Conclusions are drawn about the historical

relationship between AEW and TC count, and results are summarized (Section 3.3).

3.1 Revisiting Past Studies

Avila et al. (2000) and Thorncroft and Hodges (2001) are often cited, respectively,

in opposition to or in support of the notion that AEW activity and TC activity are

correlated interannually. In addition to these two influential works, another relevant

study is Hopsch et al. (2007), which used the technique developed in Thorncroft and

Hodges (2001) to revisit and extend the historical record of AEW activity, ultimately
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overturning the still-cited conclusion of the original work that AEW and TC count

are correlated interannually.

Since the original studies did release annual counts, but did not necessarily in-

clude relevant statistics to make sense of the counts (relying primarily on anecdotal

explanations and visual inspection), these counts are revisited and rigorous statistical

tests are performed here. First, each study is considered separately (Sections 3.1.1,

3.1.2, and 3.1.3), and then the studies are compared to each other (Section 3.1.4).

Since some of the arguments presented by the authors of the original studies were

dependent on timeframe and/or ENSO phase, these statistical tests are performed

on all years, all years after 1985, El Niño years only, La Niña years only, and neutral

ENSO years (see Appendix B for details of the ENSO classification).

3.1.1 Data Published by Avila et al. (2000)

Avila et al. (2000) published a table of Atlantic tropical statistics for the 31 years

between 1967 and 1997 (see their Table 1), including the number of waves, both the

total number and African number of tropical systems, broken down into the categories

of tropical depressions, tropical storms, and hurricanes, and the ratio of African to

non-African systems for each year (TCs were counted as “African” if they developed

from an AEW). Atlantic disturbances that emerged from the coast of Africa were

tracked manually using synoptic analysis and counts were totaled for the months

of May through November (MJJASON). The authors counted all systems that were

identifiable in wind, pressure, or cloud patterns for multiple days, with no attempt

to eliminate weaker systems.

In the original study, no explicit correlations were calculated and the idea that

AEW variability might have any relationship to TC variability was summarily dis-

missed, since “year-to-year variation in the total number of waves is probably not

significant because the process of identifying tropical waves has not been uniformly
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applied over the years” (Avila et al., 2000). While this potential inhomogeneity was a

reality in earlier works and should be taken into account, the methodology remained

fairly consistent throughout publications in which the tables were updated (Avila and

Clark, 1989; Avila and Pasch, 1992; Avila et al., 2000). For certain years in Avila

et al. (2000) as well as in earlier studies, narratives were constructed by the authors to

explain variance. For example, 1972, 1983, and 1997 were identified by the authors as

“strong El Niño years,” and also years in which there was an abnormally low number

of African tropical storms relative to the total number of tropical storms.

Although there was no statistical analysis performed in the original study, the

authors attributed much of the observed variability to ENSO variations, so when

computing correlation coefficients, the phase of ENSO is taken into consideration

(see Appendix B). The correlation coefficients between AEWs and tropical storms,

and AEWs and hurricanes were calculated from the historical counts published by

Avila et al. (2000) and are displayed in Figure 3.1. All years 1967-1997 are included

in the “All” category (31 years), all years after 1985 in the “Post-1985” category (13

years), only years in which ENSO was in its positive phase in the “El Nino” category

(9 years), only years in which ENSO was in the negative phase in the “La Nina”

category (7 years), and finally all years in which the ENSO index was not strongly

positive or negative in the “Neutral” category (21 years).

The statistical analysis suggests that ENSO phase may be a limiting factor in the

correlation between AEWs and tropical systems, although this is tempered by small

sample size. Considering all years together, all years post-1985, and El Niño years,

there is no correlation between AEW and TC activity. Correlation coefficients are

larger and skew positive for La Niña years, but this is not statistically significant.

Since there are only seven La Niña years in the historical record, it is impossible to

know if the lack of significance is due to the lack of a relationship, or simply small

sample size.
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Figure 3.1: Correlation between TC counts and AEW counts calculated from data
originally published by Avila et al. (2000). Includes Pearson’s correlation coefficients
(R-values) between annual (May through November) AEW counts and TC counts,
with error bars denoting the 95% confidence intervals. AEW counts are correlated
with both tropical storm counts (left) and hurricane counts (right) for all years (n=31,
1967-1997), all years post-1985 (n=13, 1985-1997), El Niño years only (n=11), La
Niña years only (n=8), and neutral ENSO years (n=12).

A potential dependence on ENSO phase would not be wholly surprising, since

El Niño years are characterized by hostile conditions in the MDR due to increased

shear, and previous authors have suggested that this may trump any effect from AEW

variability (see Section 1.2.2). Although there could be a difference in the relationship

between AEW and TC count according to ENSO phase, there is not enough evidence

to rule out the possibility that the average AEW count is the same regardless of

ENSO phase, with an average of 62.0 waves in La Niña years and 57.1 waves in El

Niño years (an unpaired Student’s t-test returns p = 0.11), compared with an overall

average of 60.7 waves per year. This lends some credence to the idea that “these

waves are very persistent” and “[maintain] their identity and westward progression in

spite of any hostile large-scale environment they might encounter” (Avila and Clark,

1989).
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Despite the statement to the contrary in the original study, it seems that the AEW

count in this dataset does exhibit interannual variability, with a standard deviation

of over 11% of the mean. While the statistical analysis performed here of the counts

published by Avila et al. (2000) suggests that AEW variability likely comes second

to large-scale favorability, it also hints that there may be a weak correlation between

AEW activity and TC activity in the absence of a strong El Niño.

3.1.2 Data Published by Thorncroft and Hodges (2001)

Although Thorncroft and Hodges (2001) are often cited in support of the claim that

AEW and TC interannual variability are correlated, the original analysis was based

on visual inspection and the quantitative correlations found in their data are weak at

best. Part of this may be due to the small sample size, since the study only considered

the 20 years from 1979 through 1998, but even the weak patterns found in these years

do not hold when the same counting techniques were later used to extend the record

(Hopsch et al., 2007). Potential reasons for this are discussed in Section 3.1.4, but

one possible explanation involves the importance of the seasonal cycle. Therefore, it

is important to note that Thorncroft and Hodges included systems from May through

October (MJJASO).

As mentioned in Section 2.2.2, this was the first study to attempt to track AEWs

using an automated system, tracing closed relative vorticity maxima that exceed a

threshold value, last for 2 of more days, and travel at least 10◦ zonally in ECMWF

reanalysis from 1979 to 1993 (Gibson, 1997) and ECMWF operational analyses be-

tween 1994 and 1998. Thorncroft and Hodges counted 850 mb waves in a box between

5◦–15◦N and 10◦–20◦W using the tracker output, and these counts are plotted along

with named storm, hurricane, and intense hurricane counts for comparison in Figure

13 of the original study. The box was chosen because the authors found the southern

storm track to be the most relevant to TC development and the northern track to have
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comparatively little interannual variability. No statistical tests were performed in the

original study, but a “visual inspection” indicated that “from 1985 onward there [was]

a strong positive correlation” between AEW activity (850 mb wave counts) and TC

activity.

To test these conclusions, values were manually transcribed from the plot in Fig-

ure 13 of Thorncroft and Hodges (2001) for analysis. Years are again grouped as

described above in Section 3.1.1, to calculate correlation coefficients between AEW

count and tropical storm count totals, and AEW count and hurricane count totals

for the relevant months. Results are shown in Figure 3.2. All years 1979-1998 are

included in the “All” category (20 years), only years after 1985 in the “All Post-1985”

category (14 years), only years in which ENSO was in its positive phase in the “El

Nino” category (6 years), only years in which ENSO was in the negative phase in the

“La Nina” category (4 years), and finally all years in which the ENSO index was not

strongly positive or negative in the “Neutral” category (10 years).

The small sample size makes it difficult to draw conclusions about the potential

importance of the phase of ENSO in this dataset. The correlation coefficients in the

La Niña bin are virtually meaningless, since there were only 4 years included and the

confidence intervals are expansive. Although the reasons are unclear, the 1985-1998

correlation coefficients are significantly positive at the 95% confidence level, with

both tropical storm and hurricane counts correlated with AEW count. Otherwise,

there are no statistically significant correlations, and when revisited by Hopsch et al.

(2007), the difference between the pre- and post-1985 relationship vanishes. This is

discussed further in the next section.

The AEW count in this dataset exhibits strong interannual variability, with a

standard deviation of 29% of the mean. There is not enough evidence to rule out

the possibility that the average AEW count is the same regardless of ENSO phase,

with an average of 14.5 waves in La Niña years and 12.0 waves in El Niño years (an
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Figure 3.2: Correlation between TC counts and AEW counts calculated from data
originally published by Thorncroft and Hodges (2001). Includes Pearson’s correlation
coefficients (R-values) between annual (May through October) AEW counts and TC
counts, with error bars denoting the 95% confidence intervals. AEW counts are
correlated with both tropical storm counts (left) and hurricane counts (right) for all
years (n=20, 1979-1998), all years post-1985 (n=14, 1985-1998), El Niño years only
(n=6), La Niña years only (n=4), and neutral ENSO years (n=10).

unpaired Student’s t-test returns p = 0.32), compared with an overall average of 12.3

waves per year.

3.1.3 Data Published by Hopsch et al. (2007)

Hopsch et al. (2007) applied the automated tracking technique from Thorncroft and

Hodges (2001) to July through October (JASO) data from ERA-40 (Uppala et al.,

2005), whereas the original study combined May through October data from an ear-

lier reanalysis (Gibson, 1997) with additional years from operational analysis. Like

Thorncroft and Hodges (2001), Hopsch et al. (2007) found that the southern storm

track is the most relevant for TC development and has significant seasonal and inter-

annual variability, but unlike Thorncroft and Hodges, Hopsch et al. found that AEW

counts were uncorrelated with TC activity interannually.
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Figure 3.3: Correlation between TC counts and AEW counts calculated from data
originally published by Hopsch et al. (2007). Includes Pearson’s correlation coef-
ficients (R-values) between annual (July through October) AEW counts and TC
counts, with error bars denoting the 95% confidence intervals. Correlations are shown
between TC and AEW counts (far left), TC counts and MDR AEW counts (center
left), MDR TC counts and AEW counts (center right), and MDR TC and MDR AEW
counts (far right) for all years (n=36, 1967-2002), all years post-1985 (n=18, 1985-
2002), El Niño years only (n=12), La Niña years only (n=11), and neutral ENSO
years (n=13).

To verify, values were manually transcribed from the plot in Figure 8 of Hopsch

et al. (2007) for further analysis. Years are grouped as in the previous sections, with

“All” encompassing the years 1967-2002 (36 years), “Post-1985” including 1985-2002

(18 years), “El Niño” including only strong positive ENSO phase years (12 years), “La

Niña” including only negative ENSO years (11 years), and finally “Neutral” including

the years with neither strongly positive nor strongly negative ENSO index (13 years).

Hopsch et al. provided not only the counts of AEWs from the southern storm track

(using roughly the same box as Thorncroft and Hodges, 9◦–18◦N and 10◦–20◦W) and

TC counts, but also the number of TCs that formed in and the number of AEWs

that reached the MDR (defined as 10◦–20◦N and 20◦–80◦W).

The correlation coefficients calculated from the historical counts published by

Hopsch et al. (2007) are shown in Figure 3.3, including the correlation between the

69



TC count and AEW count from Hopsch et al. (2007), the total TC count and the MDR

AEW count, the MDR TC count and the total AEW, and the MDR TC count and

the MDR AEW count. In contrast to Thorncroft and Hodges (2001) and Figure 3.2,

there is notably little difference between the AEW-TC relationships in the subset of

post-1985 years when compared to the full timeseries. Despite this being a follow-

up study to Thorncroft and Hodges (2001), Hopsch et al. (2007) did not have an

explanation for this discrepancy, remarking:

[W]e found that [the significant interannual AEW variability] is not sig-

nificantly correlated with Atlantic tropical cyclone activity. This disagrees

with the suggestion made by TH01 [Thorncroft and Hodges, 2001], that

tropical cyclones may be weakly but positively correlated with the numbers

of storms. In fact, even the short period in TH01 where there appeared to

be a positive correlation (1985–98) is not reproduced in the present analy-

sis. The reasons for the differences are not easy to determine, although it

should be noted that TH01 used arguably a reanalysis product (ERA-15)

that is not as good as the one used in the current study [ERA-40], together

with operational analysis that included years where different assimilation

systems were used and the resolution progressively increased. The best cor-

relation with tropical cyclones in the TH01 study appeared to be exactly

when the operational analyses were used [four years, 1994-1998].

There is no significant correlation on an interannual scale in any of the com-

binations of TC and AEW counts shown in Figure 3.3. Hopsch et al. (2007) also

considered low-frequency variation (11-year running mean count) and argued for a

relationship, but the dataset is quite short to draw convincing conclusions from such

low-frequency and small amplitude variation. Furthermore, there is not a clear argu-

ment why one would expect a running average to be physically meaningful, as there
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is no evidence interannual count variation is not stochastic, and the choice of eleven

years is arbitrary.

Hopsch et al. (2007) also argue that seasonal variation in TC and AEW count

may be related, and further that AEW count may be more important than environ-

mental factors. While the TC and AEW counts do share similar seasonal cycles, their

argument that this is more important than the environment is flawed, as the authors

were mistaken on the effect shear has on environmental favorability, arguing:

In contrast [to the seasonal peak of AEW and TC count in September],

the tropospheric deep vertical shear shows no such peak in September sug-

gestive of the fact that seasonal variations in storm [AEW] activity at the

height of the tropical cyclone season may be more important than seasonal

variations in the environment (measured in terms of shear).

In the accompanying figure (their Figure 7), the 200-850 mb shear shows a clear mini-

mum in September, which actually corresponds with maximum favorability (measured

in terms of shear).

The AEW count in this dataset does exhibit strong interannual variability, with

a standard deviation of 21% of the mean for all AEWs, and 29% of the mean for

AEWs that make it to the MDR. There is no statistical difference between average

AEW count when binning by ENSO phase, with an average of 15.3 waves in La Niña

years and 15.1 waves in El Niño years (an unpaired Student’s t-test returns p = 0.88),

compared with an overall average of 15.2 waves per year total. Considering only the

subset of waves that proceed to the MDR, there are an average of 9.6 waves in La

Niña years and 9.9 waves in El Niño years (an unpaired Student’s t-test returns p

= 0.80), compared with an overall average of 10.1 waves annually between June and

October.
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3.1.4 Intercomparison of Past Studies

Since Avila et al. (2000), Thorncroft and Hodges (2001), and Hopsch et al. (2007)

each set out to produce a historical climatology of AEW count that is relevant for

comparison with annual TC counts, one might expect to find agreement in the inter-

annual variability of AEW activity reported by each study. Surprisingly, the AEW

counts from the 19 overlapping years of the two most-cited studies, Avila et al. (2000)

and Thorncroft and Hodges (2001), exhibit no statistically significant correlation with

each other, with a coefficient of determination of R2 < 0.01. Perhaps this could be at-

tributed to differences in methodology, since the authors used very different methods

of enumerating AEW count. Yet despite Hopsch et al. (2007) having been a follow-up

study to Thorncroft and Hodges (2001) and using an almost identical methodology,

there is not a significant correlation in AEW counts across these two studies during

the 20 overlapping years either, with a coefficient of determination of R2 = 0.03.

Regardless of the original conclusions drawn by the authors, the data from Avila

et al. (2000) does exhibit interannual variability and may hint at a weak connection

between AEW activity and TC activity in the absence of a strong El Niño, despite

no apparent statistically significant change in average AEW count with ENSO phase.

Since this dependence of the AEW-TC relationship on ENSO phase is not present

in other studies, it may be due to the peculiarities of the specific methodology the

authors employed. The relationships uncovered in the statistical analysis are weak,

with any potential signal likely masked by two methodological choices. Specifically,

the authors: 1) counted anything remotely resembling an AEW, so weak systems and

simultaneous twin vortices may have been overrepresented, and 2) defined the season

of interest very broadly, as May 1 through November 30 (MJJASON).

On the other hand, Thorncroft and Hodges (2001) claimed to have uncovered

a historical correlation between AEW count and TC count, especially for the short

time period from 1985 through 1998. While the reported correlation was based on
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visual inspection and the study wanted for quantitative statistics, there is indeed

a statistically significant positive correlation present between the 1985-1998 AEW

and TC counts from the original study. The authors did not suggest any physical

explanation for the reported shift in the AEW-TC relationship after 1985, and the

follow-up study from Hopsch et al. (2007) found that this post-1985 correlation is

not actually reproducible, in that it is not present in an extended historical record

created using similar methodology. However, the historical AEW records set forth

by both Thorncroft and Hodges (2001) and Hopsch et al. (2007) do indeed exhibit

marked interannual variability, stronger than that of Avila et al. (2000).

The drastically different average count yielded by each study is another symptom

of the inconsistencies in the methodologies used. Where Avila et al. (2000) may

have erred on the side of over-counting disturbances, Thorncroft and Hodges (2001)

and Hopsch et al. (2007) systematically excluded certain waves, specifically those

propagating along the AEJN and those lacking a closed vorticity contour, resulting in

significantly lower AEW counts. Avila et al. (2000) found an average of 60.7 AEWs

each year, compared with 12.3 for Thorncroft and Hodges (2001) and 15.2 for Hopsch

et al. (2007). Avila et al. (2000) used manual synoptic analysis to count all AEWs

for the months of May through November, while Thorncroft and Hodges (2001) and

Hopsch et al. (2007) only considered AEWs identified by an automated tracker in a

10◦× 10◦ box that was designed to count AEWs propagating along the AEJS, for the

months of May through October and July through October, respectively.

Despite Hopsch et al. (2007) totaling AEW counts for fewer months than Thorn-

croft and Hodges (2001) (JASO versus MJJASO), the former study reported higher

average counts than the latter. While Hopsch et al. (2007) suggest that differences

in AEW-TC correlations may be attributable to the difference in reanalysis products

used between the two studies, and this argument could be extended to the differences

in counts, the discrepancy in average count could also be due to their repositioning of
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the AEW domain of interest from Thorncroft and Hodges (2001) or due to differences

in the range of dates averaged (1967-2002 versus 1979-1998).

Along with the counting method, the variability of “total count” of AEWs is

likely sensitive to the seasonal timeframe considered. Unfortunately, the past works

discussed here did not provide monthly breakdowns of the AEW counts annually, so

it is impossible to determine the relative importance of the differences in counting

methodologies versus definitions of AEW seasons. Hopsch et al. (2007) found that

AEWs seem to be more likely to develop into TCs in August and September, with

roughly 40% of waves developing, compared to 0%, 12%, and 15% in June, July, and

October. That, coupled with the fact that there tend to be many AEWs before the

hurricane season begins in earnest, means the seasonal cycle is an important factor

to consider when studying the relationship between AEWs and TCs.

Figure 3.4 shows a detailed comparison of the interannual variability of the AEW

counts of the three different studies, including cross-study correlation coefficients and

95% confidence intervals, broken into the same categories for which each study’s

AEW counts were compared to TC counts in Figures 3.1, 3.2, and 3.3. There is

no statistically significant correlation for AEW count between any of the three past

studies detailed above, regardless of the timeframe or ENSO phase considered. This

is likely due to the differences in counting methodology mentioned above.

Since there is no agreement between any of the major past works that examined

AEW variability in order to test for correlation with interannual TC variability, either

on the AEW historical record itself or on the conclusions drawn about the relationship

between AEWs and TCs, it is necessary to establish a baseline historical record

of AEW activity using reanalysis before moving on to analyze model results. To

address this deficiency in the literature, the historical record produced by applying

the methodology discussed in Section 2.2.2 to NCEP-NCAR II reanalysis data is

presented in the next section.
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Figure 3.4: Correlation of AEW counts across studies, calculated from data originally
published by Avila et al. (2000), Thorncroft and Hodges (2001), and Hopsch et al.
(2007). Includes Pearson’s correlation coefficients (R-values) between the annual
AEW counts of each study, with error bars denoting the 95% confidence intervals.
Total AEW counts for overlapping years are correlated between Avila et al. (2000)
and Thorncroft and Hodges (2001) (left), Thorncroft and Hodges (2001) and Hopsch
et al. (2007) (center), and Avila et al. (2000) and Hopsch et al. (2007) (right), for all
overlapping years, all overlapping years post-1985, overlapping El Niño years only,
overlapping La Niña years only, and overlapping neutral ENSO years.

3.2 Establishing Historical AEW Activity Using

Reanalysis

The results of applying novel tracking techniques (described in Section 2.2.2) to

NCEP-NCAR II reanalysis (described in Section 2.1.1) are presented here, produc-

ing a new climatological record of AEW activity from 1979 through 2012 to address

the shortcomings of past studies (described in Section 3.1.4). Several aspects of this

new historical record of AEW activity are detailed and compared with past studies

where appropriate, including the seasonal cycles of AEW and TC count statistics

(Section 3.2.1), the power spectrum and statistical measures of AEW activity (Sec-

tion 3.2.2), and the interannual variability of AEW and TC count statistics and
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potential correlations (Section 3.2.3). Finally, a multiple linear regression model of

TC count is considered (Section 3.2.4).

3.2.1 Seasonal Cycle of Count Statistics

Few past studies of AEWs have reported AEW counts separately by month, but most

studies that consider seasonal cycle agree that peak AEW activity typically occurs in

August or September. In tracking closed vorticity contours, Thorncroft and Hodges

(2001) found a strong peak in seasonal AEW activity in August at the 600 mb level,

and in September at the 850 mb level. Using composite spectral analysis to perform

a global analysis of OLR, Frank and Roundy (2006) found that tropical cyclones and

AEWs have similar seasonal cycles. When Hopsch et al. (2007) analyzed 2- to 6-day

filtered 850 mb meridional wind variance from reanalysis, AEW activity was elevated

from July through October. Similarly, Agudelo et al. (2011) found that about 35%

of the annual AEW activity occurred in the months of July through September, with

peak activity in August.

As explained in Section 2.2.2, the present tracking methodology produces monthly

counts of AEWs, developing AEWs, TCs, and African TCs. These monthly counts

are averaged over all of the years of the reanalysis (1979-2012) and are plotted in

Figure 3.5, along with 95% confidence intervals. The seasonal cycle of AEWs (Fig-

ure 3.5a) shows good agreement with past studies (Thorncroft and Hodges, 2001;

Frank and Roundy, 2006; Hopsch et al., 2007; Agudelo et al., 2011), with AEW

activity elevated July through October and peaking in August.

Although there are more AEWs in July than in October (see Figure 3.5a), rel-

atively few of them mature into TCs, compared to the months of August through

October (see Figure 3.5c). The environment becomes more favorable and hurricane

season picks up somewhat abruptly in August (see Figure 3.5b), with August through

October showing the most elevated TC activity on average. Because the focus of this
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study is to compare AEW and TC variability, it is reasonable to select the months

in which both AEW and TC activity are elevated for consideration. For this reason,

total August through October (ASO) counts are subsequently referred to as “annual

counts,” unless otherwise specified.

3.2.2 Power Spectrum and AEW Statistical Measures

The statistical techniques discussed in Section 2.3.3 and used to validate the AEW

counting methodology across all simulations were applied to the NCEP-NCAR II

reanalysis data to produce a normalized power spectrum of 1-10 day band-pass filtered

850 mb meridional winds, averaged between 10◦N and 20◦N near the coast of Africa,

from six-hourly data between August 1 and October 31, averaged for the years 1979-

2012 (see Figure 3.6). The general shape of this spectrum compares favorably with

similar spectral representations of AEWs from past studies (Albignat and Reed, 1980;

Lau and Lau, 1990; Thorncroft and Rowell, 1998), with a period of maximum power

of 3.4 days, a spectral centroid of 3.4 days, and 55% of the power located in the 3-5

day band. This provides further evidence that NCEP-NCAR II adequately captures

AEW variability (see also Section 2.3.1) and is an objective check on the reasonability

of the manual measure of AEW activity. This power spectrum is revisited in more

detail in Section 4.2, in comparison with model-derived spectra.

3.2.3 Interannual Variability of Count Statistics

This section begins with a comparison of the interannual variability of AEW activity

in the present study with that reported by Avila et al. (2000), Thorncroft and Hodges

(2001), and Hopsch et al. (2007), and a discussion of the features that distinguish the

present study from the existing literature. Once this context has been established,

the dataset produced using the manual-automated tracking technique is examined
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Figure 3.6: Normalized power spectrum of 1-10 day band-pass filtered meridional
wind at 850mb, averaged between 10◦N and 20◦N, at the coast of Africa (15◦W), for
August 1 through October 31, averaged for 1972-2012 for NCEP-NCAR II reanalysis.
The 3-5 day band is highlighted in cyan.

further, with a focus on the relationship between AEW activity and TC activity on

seasonal timescales.

To compare the present annual count statistics with count statistics from the

past studies discussed in Section 3.1 interannually, AEW counts were totaled for the

months that overlap with each study and then correlation coefficients were calculated

between these “annual counts” from the NCEP-NCAR II reanalysis and each of the

past studies. It is worth noting that the definition of the season does not seem to have

an extreme effect on the interannual variability of AEW count in the current study

(this is discussed further below), but months were matched as closely as possible

when comparing with each past study to minimize confounding variables. Although

some past studies have included AEWs from May in their total seasonal counts, the

current methodology only provides counts for June through November, since May

is not technically part of hurricane season. Ultimately, the June through November

NCEP-NCAR II counts were compared with the May through November counts from

Avila et al. (2000), June though October with the May through October counts from
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Figure 3.7: Correlation of AEW counts between the present study and past stud-
ies, calculated using data originally published by Avila et al. (2000), Thorncroft and
Hodges (2001), and Hopsch et al. (2007). Includes Pearson’s correlation coefficients
(R-values) between the annual AEW counts of each study, with error bars denoting
the 95% confidence intervals. Total AEW counts established in this study are cor-
related with Avila et al. (2000) (left), Thorncroft and Hodges (2001) (center), and
Hopsch et al. (2007) (right), for all overlapping years, all overlapping years post-1985,
overlapping El Niño years only, overlapping La Niña years only, and overlapping
neutral ENSO years.

Thorncroft and Hodges (2001), and July through October with the corresponding

counts from Hopsch et al. (2007).

No statistically significant correlation for AEW count between the present study

and any of the three past studies was found, regardless of the timeframe or ENSO

phase considered, as shown in Figure 3.7. This lack of agreement with past studies

might be worrisome, except for the fact that none of the past studies agree with each

other (recall Figure 3.4). It is impossible to make a value judgment on the accuracy

of the current study based on its lack of agreement with irreconcilable past studies.

Some possibilities are briefly discussed in Section 3.1.4, but without more details of

the past studies than are publicly available, it is impossible to determine precisely

why they differ from each other, or from the current study.
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There are several relevant differences between the methodology used here and the

methodology of past studies, including differences in the types of waves counted and

the choice of months examined, which conceivably make the present dataset more

compelling and relevant for addressing the problem at hand. As described in Sec-

tion 2.2.2, the methodology used in this study was designed to target and count

relevant AEWs, i.e., capturing signatures of strong waves propagating along both

the AEJN and AEJS, without double-counting “simultaneous twin vortices” (Fink

et al., 2004), and only counting waves that originated in Africa and make it to the

MDR, giving these waves a chance to develop into TCs. While Avila et al. (2000)

counted every Atlantic wave, perhaps double-counting “simultaneous twin vortices”

and including weak transient systems in the process, Thorncroft and Hodges (2001)

and Hopsch et al. (2007) systematically excluded certain waves, not only intentionally

excluding waves propagating along the AEJN, but perhaps unintentionally excluding

those that did not have a closed vorticity contour. These methodological differences

are manifest in the very different annual counts for each study. Correcting for the

number of months considered, the number of AEWs counted annually using the cur-

rent methodology is significantly greater than for Thorncroft and Hodges (2001) and

Hopsch et al. (2007), but is significantly fewer than for Avila et al. (2000).

As argued in Section 3.2.1, since the focus of this study is comparing AEW and

TC variability, it is reasonable to consider only months in which both AEW and

TC activity are elevated. This intentional choice means there is a better chance of

locating a signal within the noise and determining if there is a relationship between

AEWs and TCs, as AEW variability in months during which there are few or no TCs

is less likely to have an impact on TC variability. On the other hand, both Avila

et al. (2000) and Thorncroft and Hodges (2001) defined their season of interest very

broadly, as MJJASON and MJJASO, respectively. Since the intercomparison of past

studies in Section 3.1.4 indicated that there might be sensitivity to the definition of a
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Figure 3.8: Correlation between TC counts and AEW counts from present study.
Includes Pearson’s correlation coefficients (R-values) between annual (defined two
different ways) AEW counts and TC counts, with error bars denoting the 95% con-
fidence intervals. TC and AEW counts are totaled for the months of June through
November (JJASON, left) and August through October (ASO, right) and correlated
for all years (n=34, 1979-2012), all years post-1985 (n=28, 1985-2012), El Niño years
only (n=10), La Niña years only (n=9), and neutral ENSO years (n=15).

season, the AEW and TC counts produced using the current methodology as applied

to NCEP-NCAR II are first correlated interannually for both the entire hurricane

season (June 1 through November 31) and for the peak months of activity (August

1 through October 31), broken into the same categories for which past studies were

examined and compared and shown in Figure 3.8.

While the correlations are unsurprisingly stronger for the months of elevated AEW

and TC activity (ASO), even the seasonal totals (JJASON) of AEW and TC count

show statistically significant positive correlation interannually in Figure 3.8. While

the signal is stronger when isolating the months of elevated activity, the interannually

variability does not seem strongly dependent on the definition of the season in the

present study. This may or may not hold true in past studies, but does suggest that
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Figure 3.9: Scatterplot of annual total TC count versus AEW count for the months
of August through October (ASO), as determined from NCEP-NCAR II reanalysis
and IBTrACS. Each point is color-coded by the ENSO phase of the year, with El
Niño years in red, La Niña years in blue, and neutral ENSO years in yellow.

the differences in counting methodology may be more important than the differences

in the months considered when comparing studies. As in past studies, the AEW count

in this newly-derived historical dataset does exhibit strong interannual variability,

with a standard deviation of 18% of the mean, regardless of the definition of season

(JJASON, JJASO, JASO, or ASO).

Figure 3.9 shows a scatterplot of annual (ASO) TC count versus AEW count for

all years in the present reanalysis-derived historical record, with El Niño years plotted

as red triangles, La Niña years as blue triangles, and neutral ENSO years as yellow

diamonds (see Appendix B for definitions of the ENSO classifications). Contrary

to the conclusion suggested in the analysis of the data from Avila et al. (2000) in

Section 3.1.1, that correlation might be stronger in the absence of a strong El Niño,

83



the relationship between AEW count and TC count appears weaker in La Niña years

than in El Niño years (see Figure 3.8 for correlation coefficients). This is likely an

artifact of small sample size and is not conclusive, with only 9 La Niña years in the

dataset. The importance of ENSO phase is revisited throughout this dissertation,

particularly in Sections 3.2.4, 4.5, and 5.3.

3.2.4 Multiple Linear Regression Models of TC Count

As shown in Figure 3.8 of Section 3.2.3, there is a significant interannual correlation

between annual (ASO) AEW count and TC count, with a 95% confidence interval of

0.569 < R < 0.874 (R2 = 0.57, p = 1.8×10−7). Another way of expressing this result

is that the measured AEW variability explains 57% of the variance in TC count. This

is a significant result itself, providing the first quantitative evidence supporting the

conclusions suggested by Thorncroft and Hodges (2001).

One could argue that this correlation is not causal and is instead mediated by

external factors, and that perhaps AEW variability does not play an active role in

influencing TC activity, but rather the AEW and TC counts are controlled by the

same large-scale environmental factors. As suggested by Avila et al. (2000), changes

in AEW activity could simply reflect changes in the phase of ENSO. To address

this concern, stepwise linear models of TC count are constructed, using ENSO index

(see Appendix B for details), AEW count, and the year as the set of predictors for

multiple linear regression models. These three potential predictors were each tested

separately, as well as in various combinations, producing the adjusted coefficients

of determination and associated p-values shown below in Table 3.1. In this table,

notation of the form y ∼ 1 + x1 + x2 + x3, where y is the predictand and xi are

predictors, is shorthand for the multiple linear regression model y = C0 + C1x1 +

C2x2 + C3x3, where Ci are constants.
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Table 3.1: Multiple Linear Regression of Historical TC Counts (1979-2012)

Linear Model Adjusted R2 p-value
TC ∼ 1 + AEW 0.566 1.8× 10−7

TC ∼ 1 + year 0.321 2.8× 10−4

TC ∼ 1 + ENSO 0.233 2.3× 10−3

TC ∼ 1 + year + ENSO 0.516 4.9× 10−6

TC ∼ 1 + year + ENSO + AEW 0.712 7.1× 10−9

The year, ENSO index, and AEW count each shows significant skill over a con-

stant model in explaining TC count. As shown in Table 3.1, there is a statistically

significant trend in the TC count data (R2 = 0.321, p = 2.8× 10−4), associated with

an average slope of 0.23 additional TCs each year, which may be associated with

the tendency for negative Atlantic Meridional Mode states prior to 1995 and positive

thereafter (Kossin and Vimont, 2007). Of AEW count, year, and ENSO phase, AEW

count explains the highest percentage of variance in TC count, and each individually

explains 57%, 32%, and 23%, respectively. Together, year and ENSO index account

for 52% of the variance in TC count (R2 = 0.516, p = 4.9×10−6), but the addition of

AEW count increases this to over 71% (R2 = 0.712, p = 7.1× 10−9). The p-value to

accept AEW count as an additional predictor in the stepwise model is p = 0.000053,

which demonstrates that it provides a statistically significant improvement over year

and ENSO index alone.

Notably, there is no statistically significant covariance between AEW count and

ENSO index (R2 = 0.079, p = 0.11). There is a weak but statistically significant

trend evident in AEW count, i.e., AEW count increases with time, with a slope of

an average of 0.13 additional AEWs per year (R2 = 0.239, p = 0.0033). This is

worth noting, but since the AEW count was derived from reanalysis, as mentioned

in Section 2.1.1, trends cannot be trusted at face value, due to discontinuities in

assimilated observational data. (The trend in TC count, on the other hand, was not

derived from the reanalysis, and therefore represents the ostensibly real trend present

in IBTRaCS).
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Finally, to estimate the contribution of AEW count to TC count variability beyond

what is explained by ENSO phase and annual trends, both AEW count and TC

count are detrended by ENSO phase and year, and the residuals are then correlated.

Correlating these AEW and TC residuals yields a statistically significant relationship,

with a 95% confidence interval of 0.368 < R < 0.797 (R2 = 0.395; p = 7.0×10−5). In

other words, even when the effects of ENSO phase and annual trends are removed,

AEW variability still explains approximately 40% of TC interannual variability. From

this analysis, it is clear that AEW count provides skill above and beyond the large-

scale conditions encapsulated in the ENSO index.

3.3 Summary and Discussion

While past studies have attempted to determine whether or not AEW and TC activity

are correlated on interannual timescales, the methodologies employed have varied

widely, resulting in inconsistent results. These inconsistencies have exacerbated the

lack of consensus in the field, not only in terms of the relationship between AEWs

and TCs, but of the characteristics of the historical AEW record itself. In an attempt

to reconcile seemingly contradictory results, the climatological AEW count records

published by Avila et al. (2000), Thorncroft and Hodges (2001), and Hopsch et al.

(2007) were revisited, analyzed quantitatively, and compared in this chapter.

To address the deficiencies found in the literature, a historical record of AEW

activity produced using a novel tracking technique was then compared to these past

studies, described, and analyzed. Although it is impossible to determine the precise

reasons for the discrepancies between the AEW historical record as produced in past

and present studies without more details than are publicly available, some possible ex-

planations were provided, and it was argued that the present dataset is more relevant

and reliable for addressing the historical relationship between AEW and TC count.
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Finally, conclusions were drawn about the relationship between AEW and TC activity

using the updated historical record of AEW count. The findings about the historical

AEW record produced by past studies and the context into which the present study

fits, as well as the relationships between AEW and TC activity uncovered within the

new historical record described here, are summarized below.

None of the AEW counts produced by any of the past studies examined (Avila

et al., 2000; Thorncroft and Hodges, 2001; Hopsch et al., 2007) show any cross-study

interannual correlation for overlapping years, regardless of the timeframe or ENSO

phase considered. Since none of the past studies agree with each other on either

AEW average count or interannual variability, it is impossible to use these studies

to assess the accuracy of the current study, which in turn does not corroborate the

annual AEW count or interannual AEW variability of any of the past studies. That

said, there is good agreement between the seasonal cycle and spectral statistics of the

present historical record with past studies (Albignat and Reed, 1980; Lau and Lau,

1990; Thorncroft and Rowell, 1998; Thorncroft and Hodges, 2001; Frank and Roundy,

2006; Hopsch et al., 2007; Agudelo et al., 2011). Since the present methodology

accurately captures the seasonal cycle of AEWs while making provisions to count

the most relevant waves over the most relevant months, there is cause to believe the

historical record produced in the present study better describes the relevant variability

of AEWs.

Although Hopsch et al. (2007) suggested that their counting methodology is sen-

sitive to the choice of reanalysis/analysis product used, and that higher resolution

reanalyses might be necessary to produce a reliable historical record of AEW activ-

ity, these potential limitations do not seem to be significant for the novel tracking

techniques used here (recall Section 2.3.1). This may be attributable to methodolog-

ical improvements that make the present dataset more robust for the purposes of

addressing AEW variability and its relationship with TC variability on interannual
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timescales. Since the present methodology includes provisions to track all strong

AEWs, while avoiding double-counting simultaneous twin vortices and excluding sys-

tems that dissipate before reaching the MDR, the AEWs counted in this study are

likely those that are most relevant to TC development.

Since Avila et al. (2000), Thorncroft and Hodges (2001), and Hopsch et al. (2007)

did not provide monthly counts and there is some suggestion that the differences in

their definitions of the AEW season of interest could have affected the transparency

of any potential AEW-TC relationship present in their data, AEW and TC counts

produced using the current methodology and the relationships therein were considered

for both the entire hurricane season (JJASON) and the peak months of AEW and TC

activity (ASO). In the present study, the correlations between AEW and TC count

are stronger between ASO totals than JJASON totals, but both seasonal definitions

result in statistically significant positive correlations interannually. This suggests that

differences in counting methodologies between past studies might be more important

than differences in the definition of the season. Although the interannual variability

does not seem strongly dependent on the definition of season in the context of the

present study, it makes sense to focus on the months for which both AEW and TC

activity are elevated (ASO), during which there is a better chance of detecting a

signal over the noise.

There is indeed a significant interannual correlation between annual (ASO) AEW

count and TC count in the present historical data, in which AEW count variability

ostensibly explains 57% of the variance in TC count. While Thorncroft and Hodges

(2001) were the first to suggest such a linkage, this is the first rigorous quantitative ev-

idence in support of this relationship. This strong correlation itself does not preclude

the possibility that AEW and TC count are simply controlled by the same large-scale

environmental factors. To address this concern, multiple linear regression was used

to evaluate the relative importance of ENSO phase, annual trends, and AEW count
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in stepwise linear models of TC count. AEW count was shown to provide significant

skill over ENSO index and annual trends, both alone and together. When detrending

AEW and TC count for ENSO index and annual trend, there is a statistically signifi-

cant correlation between the residual AEW and TC counts. Effectively removing the

impacts of ENSO phase and annual trend, AEW count still explains 40% of the TC

interannual variability.

While it is clear that AEW count provides information on TC count apart from

the large-scale conditions, there is more work to be done unpacking the potential

importance of ENSO phase in modulating the relationship between AEW and TC

variability. The relationship between AEWs and TCs in La Niña years is of especial

interest, since there are hints of a potential dependence on ENSO phase that cannot be

adequately resolved due to small sample size. To strengthen the conclusions drawn

here and strengthen the case for a causal link between AEW and TC activity, it

is necessary to isolate and study the importance of interannual variability in the

favorability of the large-scale environment. These topics are addressed through model

simulations in Chapter 5, once the model is compared against the historical record in

Chapter 4.
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Chapter 4

Results: Comparing HiRAM to the
Historical Record

The methodological techniques outlined in Section 2.2.2 have been used to produce an

updated historical record of AEW variability from NCEP-NCAR II reanalysis (Kana-

mitsu et al., 2002), which is described in detail in Chapter 3. The same techniques

are applied to the climatological suite of HiRAM simulations in this chapter in order

to compare the model-produced AEW activity to that of the reanalysis. This suite

of climatological simulations consists of three ensemble members (H1, H2, and H3),

each forced with observed seasonally and annually varying SSTs (Rayner et al., 2003)

for the period from 1982 through 2009 (see Section 2.1 for more details). HiRAM has

already been shown to reliably reproduce tropical storm statistics through past stud-

ies (see Section 1.2.3), so the main focus of this chapter is on demonstrating that the

model adequately captures AEWs through comparison with the reanalysis-derived

historical AEW record.

First, the modeled seasonal cycle of AEW and TC count statistics (Section 4.1)

and statistical measures of AEW activity (Section 4.2) are examined and compared

with the historical record. Since the results of Chapter 3 indicate that the large-scale

environment likely plays some role in the relationship between AEW and TC vari-

ability, the large-scale environmental factors, including the GPI of the Atlantic basin

and the strength of the AEJ, are examined in Section 4.3. Finally, the interannual
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variability of AEW and TC count statistics (Section 4.4) and the connections between

environmental factors, AEW activity, and TC activity (Section 4.5) are considered

and compared with the reanalysis-derived historical record. The chapter closes with

a summary of the reliability of the climatological simulations, and by extension, the

validity of using HiRAM to study AEW and TC variability.

4.1 Seasonal Cycle of Count Statistics

The tracking methodology produces monthly counts of AEWs, developing AEWs,

TCs, and African TCs (see Section 2.2.2), which are averaged over all of the years of

the reanalysis (1979-2012) and over the years of interest in each of the climatological

simulations (1982-2009). These average monthly counts are plotted in Figure 4.1,

along with 95% confidence intervals. The climatological simulations are largely con-

sistent with past studies of the AEW seasonal cycle (Thorncroft and Hodges, 2001;

Frank and Roundy, 2006; Hopsch et al., 2007; Agudelo et al., 2011), with elevated

AEW activity in the months of July through October, and show reasonable agreement

with the reanalysis-derived historical record (see Section 3.2.1). The arguments made

above in Section 3.2.1 concerning the months of interest still apply here. Namely,

although there are more AEWs in July than in October (see Figure 4.1a), relatively

few of them mature into TCs when compared to the months of August through Oc-

tober (see Figure 4.1c). As in Chapter 3, total counts for August through October

(ASO) are hereafter referred to as “annual counts.”

While the historical records derived from NCEP-NCAR II and the climatologi-

cal simulation ensemble members may have slightly different seasonal cycles, with

less of a distinct peak in AEW activity in August and stronger activity persisting

through to October in the model-derived statistics (see Figure 4.1a and 4.1c), it is

clear that the model captures the overlap in the peak AEW months and the peak TC
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Figure 4.2: August through October average counts for African easterly waves
(AEW), developing African easterly waves (AEW-TC), African tropical storms (TC-
AEW), and all tropical storms (TC) for the historical record (gray) determined from
NCEP-NCAR II reanalysis and IBTrACS, and each ensemble member of the clima-
tological suite of HiRAM simulations (H1 in blue, H2 in red, and H3 in green). Error
bars denote 95% confidence intervals.

months (see Figure 4.1a and 4.1b). Although there is some variation in peak month

between ensemble members, monthly AEW counts consistently peak earlier than TC

counts. Both AEW and TC counts are near their respective maxima in the late sum-

mer, from August through October (see Figure 4.1a and 4.1b), and this overlap is

reflected in the monthly counts of developing AEWs (Figure 4.1c) and African TCs

(Figure 4.1d). Note that the differences in Figures 4.1c and 4.1d arise due to the

counting methodology, detailed in Section 2.2.2.

Despite some slight differences in the seasonal cycle between the reanalysis-derived

and the modeled historical records, there is excellent agreement in annual total (ASO)

count in all categories, including AEW count, developing AEW count, African TC

count, and TC count (see Figure 4.2). This is evident from the overlapping 95% con-

fidence intervals (see error bars in Figure 4.2), and also holds up in rigorous statistical

testing. A Student’s paired t-test returns p-values ranging from 0.29 to 0.96 when

comparing the counts from the overlapping years of NCEP-NCAR II with each of the

HiRAM ensemble members, indicating that there is no statistically significant dif-
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ference between the reanalysis-derived average annual counts and the model-derived

annual counts.

4.2 Power Spectra and AEW Statistical Measures

For comparison with Section 3.2.2, the statistical techniques discussed in Section 2.3.3

were applied to each ensemble member to produce power spectra of 1-10 day band-pass

filtered 850 mb meridional winds, averaged between 10◦N and 20◦N near the coast of

Africa, from six-hourly data between August 1 and October 31, averaged for the years

1982-2009. Figure 4.3 shows these raw spectra for the NCEP-NCAR II reanalysis

and for the climatological ensemble members, with the 3-5 day band highlighted in

cyan. The general shape of these spectra compares favorably with similar spectral

representations of AEWs from past studies (Albignat and Reed, 1980; Lau and Lau,

1990; Thorncroft and Rowell, 1998), but note that the reanalysis-derived spectrum is

more muted than the modeled spectra (see Figure 4.3a).

NCEP-NCAR II has less total power in the 1-10 day range in comparison with

the climatological simulations, possibly due to differences in resolution. When nor-

malizing by total power in the 1-10 day band, the spectra for the climatological

ensemble members compare favorably with the NCEP-NCAR II spectrum by visual

inspection (see Figure 4.4). This normalization does not affect the calculation of the

centroid or the percent power in the 3-5 day band. There is some variation between

the ensemble members, with the centroid ranging from 3.62 to 3.69 days, and the

percent power ranging from 58.6% to 60.5%. These values are reasonably similar

to the reanalysis-derived spectral statistics, for which the centroid is 3.41 days and

54.9% of the power is in the 3-5 day band. As suggested in Section 2.3.1, it would be

interesting to produce a more detailed intercomparison of representations of AEWs
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in various reanalyses, including the spectral representations, but this is left for future

work.

4.3 Large-Scale Environmental Factors

While the climatological plots of NCEP-NCAR II fields do not necessarily represent

reality and are likely flawed themselves, they are used as a baseline for comparison

with the HiRAM climatological simulations here. Again, while it would be interest-

ing to compare the relevant fields and measures of environmental favorability across

various reanalyses, it is beyond the scope of this work. All climatological HiRAM

plots in this section are derived from 30-year climatological fields (1979-2008), and

NCEP-NCAR II plots are 34-year climatologies (1979-2012). All plots shown are an-

nual (ASO) averages, including the 600 mb zonal wind, the precipitation rate, and

the genesis potential index discussed below.

Figure 4.5 shows the zonal wind field at the level of the jet core (600 mb) for

the reanalysis (a) and each of the climatological ensemble members (b-d). While

there is some intra-ensemble variance, there is good agreement between the ensemble

members on the approximate magnitude and location of the AEJ, which is about

9-10 m s−1 at its maximum around 15◦N over Africa. The structure and magnitude

of the zonal wind compare favorably with past studies that have included plots of

zonal wind over Africa (Burpee, 1972; Cook, 1999; Leroux and Hall, 2009).

The NCEP-NCAR II jet core is marginally weaker and further south (see Fig-

ure 4.5), but the overall structure of the zonal wind is qualitatively similar to that of

the model-derived fields. These plots also compare well with Figure 1 of Cook (1999),

which includes average July zonal wind over Africa for both NCEP and EMCWF re-

analyses, plotted at the respective level of the AEJ maximum. Cook (1999) provides

an example of the degree of variation that can be observed in different reanalyses,
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strengthening the argument that, despite differences between the NCEP-NCAR II

and the HiRAM zonal winds, the AEJ is adequately captured by the model.

The average precipitation rate is shown in Figure 4.6 to give some indication of

the strength and location of the ITCZ. The ITCZ may be relevant to the relation-

ship between the AEJ, AEW activity, and TC activity, as suggested by Nicholson

and Grist (2001) and Hsieh and Cook (2005), and this potential relationship is dis-

cussed in Chapter 6. The primary rainfall core is located off the coast of Africa,

extending 20◦ into the Atlantic between 5◦ and 10◦N, with secondary maxima over

land, most notably just east of the Gulf of Guinea. The usefulness of the reanalysis-

derived precipitation is known to be limited, since NCEP-NCAR II is not a next-

generation reanalysis and does not explicitly assimilate rainfall data (Kanamitsu et al.,

2002). Regardless, the reasonable qualitative agreement between the structure of the

reanalysis-derived and model-derived precipitation rate fields is encouraging.

Finally, the genesis potential together with the spatial distribution of August

through October genesis events is considered (see Figures 4.7 and 4.8). Genesis po-

tential index (GPI) is defined in Section 2.2.1 as a measure of the large-scale favor-

ability, diagnosed from absolute vorticity at 850 mb, relative humidity at 600 mb,

potential intensity (Bister and Emanuel, 2002), and vertical wind shear between 850

and 200 mb, and is calculated from monthly mean fields averaged over all years of

each climatology (Emanuel and Nolan, 2004). The genesis points, on the other hand,

are only shown for the overlapping years (1982-2009), so as to provide a fair visual

comparison of TC quantity. The average number of TCs per year ranges from 9.1 to

9.4 in the climatological simulations, compared with 9.1 in IBTrACS during the same

time period.

In general, genesis events (Figure 4.8) tend to be roughly clustered in regions of

elevated GPI (Figure 4.7) as expected. Examining the component fields separately, it

appears that the differences between the reanalysis- and the model-derived GPI are
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primarily due to the relative humidity, which is anomalously high over Florida and

low over the MDR in NCEP-NCAR II. This is likely another artifact of the choice

of reanalysis product, but it would be interesting to examine the sensitivity of GPI

across various reanalyses to confirm.

In Figure 4.8, the genesis points are color-coded, with TCs spawned by AEWs in

red, and non-African storms in blue. For Figure 4.8a, the genesis points themselves

are taken from IBTrACS, but the storm origins were diagnosed using NCEP-NCAR

II reanalysis. As noted in previous studies (Zhao et al., 2009), HiRAM produces

anomalously few TCs in the Gulf of Mexico compared to the real world, but the origin

plots compare favorably otherwise, including in the breakdown of African versus non-

African storms. The percent of storms with African origins ranges from 71.4 to 73.6%

for the climatological ensemble members, with 72.8% in the historical dataset.

While the favorable comparison between the historical and the modeled large-scale

environment and genesis distribution is heartening, the best test of the adequacy of

HiRAM for the study of AEW activity variability is the fidelity of the AEW record

itself. This is explored in the following section and compared with the reanalysis-

derived record.

4.4 Interannual Variability of Count Statistics

Figure 4.9 provides a comparison of the historical (from NCEP-NCAR II and IB-

TrACS) and the modeled (from climatological simulations H1, H2, and H3, see Sec-

tion 2.1) AEW and TC count variability. The historical counts are shown in red, the

modeled ensemble mean is shown in blue, and the shaded areas show the count range

between the three ensemble members. In general, the interannual variability of the

modeled AEW count is of a smaller magnitude than in the historical record, but the

model does exhibit statistically significant covariance with the historical record.

103



(a) Annual African Easterly Wave Count

(b) Annual Tropical Storm Count

Figure 4.9: A comparison of historical (red) and modeled ensemble mean (blue) in-
terannual variation in counts of (a) AEWs, and (b) TCs, summed for August through
October (ASO) of each year. The historical records were determined from NCEP-
NCAR II reanalysis and IBTRaCS, respectively. The shaded area shows the simulated
maximum and minimum count from the three-member ensemble of simulations (H1,
H2, H3).
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While there is not a statistically significant correlation between individual clima-

tological simulation ensemble members and the historical AEW variability, there is

a notable correlation between the ensemble mean and the historical AEW variabil-

ity. Correlating the historical and modeled ensemble mean AEW count interannually

yields a coefficient of determination of R2 = 0.164 (p = 0.033) and a 95% confidence

interval of 0.037 < R < 0.676. For comparison, the historical and modeled TC count

yields a coefficient of determination of R2 = 0.387 (p = 0.00041), a 95% confidence in-

terval of 0.324 < R < 0.808, and there is a statistically significant correlation between

individual ensemble members and historical TC activity interannually.

The fact that the ensemble mean does show weak interannual correlation with the

historical AEW record suggests that AEW activity is at least partially determined

by the prescribed SST and thereby influenced by the large-scale environment in some

way. However, since the correlation is much weaker between modeled and historical

AEW counts than it is for TC counts, it seems that the large-scale environment exerts

less control over AEW variability than it does TC variability in the model. Coupled

with the lack of correlation between individual ensemble members and the historical

record, this may imply that the internal variability of AEW activity is greater than

TC variability. By extension, perhaps AEW variability explains a component of

the TC variability that differs between ensemble members. This idea is revisited in

Section 5.1.

As was apparent in the historical data in Section 3.2.3, there is also a direct rela-

tionship between ensemble mean AEW count and TC count in the simulations. In the

next section, correlations between AEW count and TC count in individual ensemble

members and between ensemble means are considered, along with the importance of

ENSO phase and annual trends.
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4.5 Multiple Linear Regression of TC Count

As mentioned above in Section 4.4, the climatological simulations do exhibit inter-

annually correlated AEW and TC counts. Pooling all years from the three ensemble

members together yields a coefficient of determination of R2 = 0.108 (p = 0.0023),

while the ensemble average AEW count and TC count yield a coefficient of deter-

mination of R2 = 0.128 (p = 0.062). Regardless, the correlation between the AEW

count and TC count in the model is weaker than the historical analog in Section 3.2.4,

but is still statistically significant.

Again, one could argue that this correlation is not causal and is instead mediated

by external factors. However, the results presented in Section 4.4 indicate that the

AEW activity exhibits internal variability beyond what is determined by the large-

scale environment through the prescribed SST. The notion that AEW activity may

exhibit variability independent of the environment is expanded upon in Section 5.1 by

considering the relationship between ensemble members, but is first subjected to the

same analysis as in Section 3.2.4 here. Namely, stepwise linear models of TC count are

constructed to determine the relative importance of ENSO index (see Appendix B for

details), AEW count, and year as predictors of TC count in climatological simulations

H1, H2, and H3.

As in Table 3.1, the three potential predictors of TC count were each tested

separately, as well as in various combinations, producing the adjusted coefficients of

determination and associated p-values shown below in Table 4.1. As in Section 3.2.4,

notation of the form y ∼ 1 + x1 + x2 + x3, where y is the predictand and xi are

predictors, is shorthand for the multiple linear regression model y = C0 + C1x1 +

C2x2 + C3x3, where Ci are constants. Although there are statistically significant

correlations, the associated lines of best fit are not necessarily well-constrained, due

to the level of variability and relatively small sample size. This issue is revisited
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in Section 7.1, where the interannual relationship between AEW and TC count is

quantified.

Table 4.1: Multiple Linear Regression of Modeled TC Counts (1982-2009)
for model runs H1, H2, and H3 (N=84)

Linear Model Adjusted R2 p-value
TC ∼ 1 + AEW 0.113 1.0× 10−3

TC ∼ 1 + year 0.158 1.1× 10−4

TC ∼ 1 + ENSO 0.116 8.8× 10−4

TC ∼ 1 + year + ENSO 0.273 9.2× 10−7

TC ∼ 1 + year + ENSO + AEW 0.339 6.4× 10−8

Pooling the years of the simulations together rather than considering only the

ensemble mean is an intentional decision. When conducting similar analysis as that

of Tables 3.1 and 4.1 for the ensemble average AEW and TC counts, the mean AEW

count does not provide additional skill beyond the ENSO index and year. This is not

surprising, as ensemble averaging helps bring the effects of the large-scale forcing to

the forefront, while pooling all years together gives a better indication of the chaotic

component of the model (Garner et al., 2009). Since the focus of this section is on the

internal variability of the atmosphere and that is best captured by individual ensemble

members, the remainder of the analysis in this chapter focuses on the pooled data

rather than the ensemble mean.

As in Section 3.2.4, the year, ENSO index, and AEW count each shows significant

skill over a constant model in explaining TC count variability. As shown in Table 4.1,

there is a statistically significant trend in the TC count data (R2 = 0.158, p = 1.1×

10−4), associated with an average slope of 0.14 additional TCs each year, compared

with 0.23 in the historical record. Of AEW count, year, and ENSO phase, the annual

trend actually explains the highest percentage of variance in TC count, and each

individually explains 11.3%, 15.8%, and 11.6%, respectively. Together, year and

ENSO index account for 27.3% of the variance in TC count (p = 9.2 × 10−7), but

the addition of AEW count increases this to 33.9% (p = 6.4× 10−8). The p-value to
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accept AEW count as an additional predictor in the stepwise model of TC count is

p = 0.0034, which demonstrates that AEW count provides a statistically significant

improvement over year and ENSO index alone.

As in the historical record, there is no statistically significant covariance between

AEW count and ENSO index (R2 = 0.024, p = 0.060), but the weak trend present

in AEW count in the historical record is not present in the model (R2 = 0.006,

p = 0.48). This provides support to the claim made in Section 3.2.4 that the trend

in AEW count in the reanalysis may be due to discontinuities in the assimilation of

observational data, although it could still be a real trend that the model simply fails

to capture.

Finally, again as in Section 3.2.4, both AEW count and TC count are detrended by

ENSO phase and year, and the residuals are correlated to estimate the contribution

of AEW count to TC count variability beyond what is explained by ENSO phase and

annual trends. Correlating these AEW and TC residuals yields a statistically signifi-

cant relationship, with a 95% confidence interval of 0.108 < R < 0.496 (R2 = 0.099;

p = 0.0035). This effect is weaker in the simulations than it was for the historical

record, but even when the effects of ENSO phase and annual trends are removed,

AEW variability still explains approximately 10% of TC interannual variability in

the model. From this analysis, it is clear that AEW count provides skill above and

beyond the large-scale conditions encapsulated in the ENSO index in HiRAM, as it

did in the historical record.

4.6 Summary

As demonstrated above, the climatological simulations show reasonable agreement

with the historical record in terms of AEW and TC seasonality and interannual vari-

ability, and the model adequately captures the spectral signature of AEWs as well
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as the large-scale structure of the AEJ and ITCZ. Although the climatological simu-

lations produce annual AEW and TC counts that are statistically indistinguishable

from the historical record on average, the modeled covariance between AEW and TC

counts, while still statistically significant, is weaker than in the historical record.

The model statistics are similar to the historical record in many ways, but there are

notable differences. The year, ENSO index, and AEW count each shows significant

skill in explaining variance in TC count in stepwise linear models, but each explains

less of the variance in the climatological simulations than in the historical record

(compare Tables 3.1 and 4.1). Detrending both the AEW and TC counts for ENSO

phase and annual trend, as in the reanalysis-derived historical record, the modeled

residuals are significantly correlated. The modeled AEW residuals explain 10% of

the TC residuals, which is statistically significant, though smaller in magnitude than

what was found in the reanalysis-derived historical record (40%). Although there was

a significant trend in the AEW count in the reanalysis-derived historical record, this

was not present in the modeled record. This may be due to discontinuities in the

assimilation of observational data in the reanalysis, or the trend could be real and

the model could simply fail to capture it.

While the individual ensemble members do not exhibit statistically significant

correlation with historical AEW variability, they do with historical TC variability.

Both the ensemble average AEW and TC annual count do covary with the respective

historical count. Since ensemble averaging helps isolate the effects of the large-scale

forcing, this implies that AEW activity is at least partially determined by the pre-

scribed SST, and thereby the large-scale environment, but to a lesser extent than TC

activity. Since AEW activity exhibits marked variability distinct from that forced

by the large-scale environment, it follows that the stochastic component of the AEW

variability could be related to the portion of the TC variability unexplained by the

large-scale environment. Along the same lines, AEW variability may explain a com-
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ponent of the TC variability that differs between ensemble members. This is explored

in the following chapter.

Given the above caveats, the model reliably captures the major features of the

climatological AEW and TC record across multiple temporal and physical scales. Now

that the ability of HiRAM to reasonably capture the relationship between AEWs and

TCs has been shown via its agreement with the reanalysis-derived historical record,

HiRAM is used exclusively in the next two chapters to further probe the AEW-TC

relationship.

110



Chapter 5

Results: Isolating the Internal Variability
of AEW Activity by Minimizing the Effects
of Interannual Variation in SST

The results of Chapters 3 and 4 have provided preliminary evidence that there is a

significant component of AEW activity that may be essentially stochastic, in that it is

unexplained by the large-scale environment. This is noteworthy, because the stochas-

tic AEW variability may explain a component of the TC variability that remains

unexplained by known environmental factors. To isolate and study this stochastic

component of AEW activity, first the climatological simulations are revisited in Sec-

tion 5.1. Next the simulations with interannually invariant SSTs, the control simula-

tion and the perpetual La Niña simulation, are described and analyzed in Sections 5.2

and 5.3. Finally, the results of isolating the internal variability of AEW activity are

summarized in Section 5.4.

5.1 Revisiting the Climatological Simulations

Since ensembles provide multiple realizations over the same time period, they can be

used to diagnose the internal variability of the atmospheric system. This internal vari-

ability is explored further here, first by considering the consistency across ensemble
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members (Section 5.1.1) and then by considering the perturbations of each ensemble

member from the ensemble mean (Section 5.1.2).

5.1.1 Consistency across Ensemble Members

As mentioned in Section 4.4, unlike the ensemble mean, individual ensemble member

AEW counts are not correlated with historical AEW count interannually. Examining

modeled AEW counts from different climatological ensemble members, there is no

significant interannual correlation between ensemble member AEW counts, as shown

in Figure 5.1 for both August through October (ASO) and June through November

(JJASON) totals. This indicates that, at least in the model, AEW count exhibits

variability that is independent from large-scale forcing, since each ensemble member

is forced with identical SSTs. This behavior is distinct from that of TC count, for

which there is strong correlation between ensemble members, since TC count does

have a strong dependence on SSTs. AEW counts totaled for the months of August

through October annually for each ensemble member are shown in Figure 5.2. The

perturbations of ensemble member counts from the ensemble average are examined

in Section 5.1.2.

Even in the absence of discernible interannual correlation between ensemble mem-

bers, there is strong agreement in average annual count, for not only AEWs, but also

developing AEWs, African TCs, and all TCs, as shown in Figure 5.3. While the AEW

variability is not completely dependent on SST variability, and AEW count varies on a

year-to-year basis, there is a well-defined climatological mean level of activity about

which AEW count fluctuates. As is demonstrated below, this climatological mean

does not seem sensitive to changes in ENSO phase (see Section 5.3), but can be

perturbed through manipulation of the large-scale environment (see Chapter 6).
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Figure 5.1: Correlation coefficients (R-values) of AEW count between different en-
semble members (H1-H2, H1-H3, and H2-H3) for August through October total AEW
counts (ASO, light grey) and June through November total AEW counts (JJASON,
dark grey). Error bars denote 95% confidence intervals.

Figure 5.2: Modeled August through October annual African easterly wave count for
each ensemble member of the climatological suite of HiRAM simulations (H1 in blue,
H2 in red, and H3 in green).
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Figure 5.3: Modeled August through October average counts for African easterly
waves (AEW), developing African easterly waves (AEW-TC), African tropical storms
(TC-AEW), and all tropical storms (TC) for each ensemble member of the climato-
logical suite of HiRAM simulations (H1 in blue, H2 in red, and H3 in green). Error
bars denote 95% confidence intervals.

5.1.2 Perturbation from Ensemble Mean

Since the ensemble mean is the portion of the signal most influenced by the large-

scale environment, isolating the perturbation from this ensemble mean provides an

estimate of the variability that remains unexplained by the variability of the large-

scale conditions. All three ensemble members were forced with the same SSTs and

therefore had arguably similar large-scale environments by design. To isolate the

stochastic component of the AEW and TC variability in the climatological ensemble

members, perturbation counts for each ensemble member year are constructed by

subtracting the annual ensemble mean.

This concept is formalized using the following notation:

AEW = AEW + AEW′

TC = TC + TC′

where the total AEW and TC counts of each ensemble member are broken into the

sum of the ensemble average (denoted with an overbar) and the perturbation from
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Figure 5.4: Scatterplot of the perturbation of each climatological model ensemble
member (H1, H2, H3) from the ensemble mean annual TC count versus AEW count
for the months of August through October (ASO). Each point is color-coded by the
ENSO phase of the year, with El Niño years in red, La Niña years in blue, and neutral
ENSO years in yellow.

that average (denoted with a prime). In this definition, both the ensemble average

and the perturbation from that average are time-varying. The terms AEW and TC

can be thought of as the variance due to the environmental variability, while AEW′

and TC′ can be thought of as the stochastic component of total variance.

As mentioned in Section 4.5, there is a statistically significant correlation between

AEW and TC (R2 = 0.128, p = 0.062), but when probing this relationship further

using multiple linear regression, AEW does not provide additional skill beyond the

ENSO index and year in predicting TC. This supports the notion that the variance

of the ensemble mean AEW count does not contain unique information beyond that

forced by the large-scale environment.

The relationship between annual perturbation counts is shown in a scatterplot

of TC′ versus AEW′ in Figure 5.4. The perturbation AEW and TC counts exhibit

statistically significant covariance, with a 95% confidence interval of 0.171 < R <
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0.543 (R2 = 0.138, p = 0.00050). About 14% of the variance in perturbation TC

count is explained by the perturbation AEW count, and a least squares regression

returns the following line of best fit:

TC′ ≈ 0.25 · AEW′. (5.1)

This can be interpreted to mean that the conversion rate for additional AEWs (above

and beyond the average number purportedly determined by the large-scale environ-

ment) becoming TCs is 4:1 on average.

Another way to consider the internal variability of the model atmosphere is to

remove the interannual variability in large-scale environmental factors as much as

possible, by not only subtracting for the effects of the interannual variation as above,

but by removing the interannual variation in SST entirely. The next section accom-

plishes this, by replacing the historical SSTs with climatologically average SSTs as a

lower boundary condition.

5.2 Internal Variability of Simulations with Inter-

annually Invariant SSTs

The control and perpetual La Niña simulations are each forced with composite SSTs

that vary seasonally but do not change from year to year (see Section 2.1 for more

details). The control simulation has the climatologically average SST from 1982-2005

as its lower boundary condition, and the perpetual La Niña simulation has composite

SST from the strongest La Niña years (see Appendix B). Although there could still

be some internal variation in large-scale favorability, the large-scale environment as

encapsulated in the SSTs is effectively constant from year-to-year within each of these

simulations. Even though these simulations are forced with interannually invariant

SSTs, their modeled AEW and TC counts still exhibit marked variability. This
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Figure 5.5: Scatterplot of annual TC count versus AEW count for the months of
August through October (ASO) for the control simulation (black diamonds) and the
perpetual La Niña simulation (blue triangles), along with the corresponding lines of
best fit and coefficients of determination from least-squares linear regression.

variability is a measure of the internal atmospheric variability of the model, similar

to the perturbation counts considered above in Section 5.1.2.

As is discussed further in Section 5.3, while there is a discernible increase in TC

activity, there is no statistically significant difference in average AEW count from

the control to the perpetual La Niña simulations. Further, there is no significant

difference in the relationship between AEW and TC variability. In Figure 5.5, a

scatterplot of annual (ASO) TC count versus AEW count, this manifests cleanly as

a vertical shift from the control data (shown in black) to the perpetual La Niña data

(shown in blue). While the coefficients of determination between the TC and AEW

counts may appear to be different for the control simulation (R2 = 0.329, p = 0.0081)

and the perpetual La Niña simulation (R2 = 0.142, p = 0.10), there is significant

overlap in the confidence intervals and the two are not statistically distinguishable.

While the two simulations have indistinguishable AEW counts on average, for

the same number of AEWs, there are typically more TCs in the perpetual La Niña
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simulation than in the control simulation. Another way to interpret this is that the

baseline TC activity level is higher in La Niña conditions than average environmental

conditions due to increased large-scale favorability, but the interannual variability is

similarly affected by the AEW count variance. These simulations are further unpacked

in the following section.

5.3 Control and Perpetual La Niña Simulation

Comparison

Past studies and present climatological analysis indicate that ENSO phase may play

a role in modulating the relationship between AEW and TC variability. There are

hints in Chapter 3 that La Niña years in particular could exhibit anomalous AEW-

TC correlations, and although the sample sizes are too small to resolve any potential

dependence, this motivates the study of a perpetual La Niña simulation in comparison

to a climatological control. The internal variability of the atmosphere in the control

and perpetual La Niña simulations, especially the covariance of AEW and TC count,

is discussed above in Section 5.2. In this section, the aggregate statistics for these

simulations are compared to evaluate the impacts of ENSO phase on the large-scale

environment, AEW count, and TC count. Aggregate count statistics and spectral

statistics are examined in Section 5.3.1. Section 5.3.2 provides a comparison of large-

scale environmental factors, including GPI and the associated spatial distribution of

genesis events. The significance of ENSO phase in light of these results is briefly

discussed in Section 5.3.3.

5.3.1 Count Statistics

Figure 5.6 shows averaged monthly AEW counts, TC counts, developing AEW counts,

and African TC counts for the perpetual La Niña and the control simulations. There

118



is no significant difference in AEW count seasonal cycle between the experimental and

the control simulations. While there is a difference in the magnitude of the signal for

the La Niña TC counts, developing AEW counts, and African TC counts, the general

shape of the seasonal cycle remains unchanged for all counts.

Summing these counts for the months of August through October, the differ-

ences between the perpetual La Niña and control simulations are readily apparent

in Figure 5.7. A Student’s t-test between La Niña and control AEW counts returns

a p-value of p = 0.39, revealing that there is no significant change in the number

of AEWs for perpetual La Niña conditions with over 95% confidence. As expected,

there is an increase in the number of TCs under La Niña conditions (p = 0.064).

The perpetual La Niña simulation also shows a significant increase in the number of

developing AEWs (p = 0.051) and African TCs (p = 0.032) relative to the control.

Not only is the AEW count indistinguishable between these two model simulations,

but the control and La Niña simulations have very similar spectral signatures of AEW

activity as well. The 1-10 day band-pass filtered 850 mb meridional winds averaged

between 10◦N and 20◦N near the coast of Africa from August 1 through October 31

(see Section 2.3.3) are used to verify the level of AEW activity. The control and La

Niña simulation spectra are not shown here, as they do not exhibit notable differences

from climatology, but the climatological spectra are shown in Figure 4.3.

Each simulation has spectral statistics that fall within the range of variation ex-

hibited by the climatological ensemble members (see Figure 2.8). Specifically, the

centroid for the control simulation is 3.68 days, the La Niña simulation is 3.67 days,

and the centroids for the climatological ensemble members (H1, H2, H3) are be-

tween 3.62 and 3.69 days. Similarly, the difference between the percent of the power

in the 3-5 day band for the control and the perpetual La Niña simulations is less

than the variability exhibited by the climatological ensemble members, with 59.4% in

the control, 58.2% in the perpetual La Niña simulation, and 58.6% to 60.5% in the
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Figure 5.7: Modeled August through October average counts for African easterly
waves (AEW), developing African easterly waves (AEW-TC), African tropical storms
(TC-AEW), and all tropical storms (TC) for the perpetual La Niña simulation (blue)
and the associated control simulation (white). Error bars denote 95% confidence
intervals.

climatological ensemble. Since the difference in spectral statistics between climato-

logical ensemble members is larger than between the control and perpetual La Niña

simulations, there is no detectable difference between the La Niña and the control

simulations’ AEW activity as diagnosed by spectral characteristics.

5.3.2 Large-Scale Environmental Factors

Unsurprisingly, the the large-scale environment is more favorable for development in

the perpetual La Niña simulation in comparison with the control. Figure 5.8 includes

the La Niña simulation GPI calculated from monthly mean fields (a), the control

simulation GPI (b), and the difference between the two (c). For more information on

the calculation of GPI, see Section 2.2.1. The GPI anomaly in Figure 5.8c exhibits

good agreement with Figure 6b of Camargo et al. (2007a), which also shows the

ASO La Niña GPI anomaly, calculated from NCEP Reanalysis data for the years

1950-2005. As in the historical data examined by Camargo et al. (2007a), there is a

well-defined net increase in GPI in the Atlantic basin in association with modeled La

Niña conditions.
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(a) La Niña GPI (b) Control GPI

(c) GPI Difference (La Niña minus Control)

Figure 5.8: Genesis potential index for the months of August through October, for
(a) the perpetual La Niña interannually invariant simulation, (b) the control inter-
annually invariant simulation, and (c) the difference, i.e., the control GPI subtracted
from the perpetual La Niña GPI.
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The GPI in the La Niña simulation is predominantly elevated in the MDR (see

Figure 5.8). The basin-wide average GPI is 4.8% greater in the perpetual La Niña

simulation when compared with the control, and 22.5% greater in the MDR. This is

also evident in the spatial distribution of genesis events shown in Figure 5.9, with

a 44.4% increase in TCs developing in the MDR, a 19.5% increase outside of the

MDR, and a total increase of 31.4%. As discussed in Section 5.2, although there is

no significant change in the AEW activity or the degree of covariance between AEW

count and TC count, the percent of TCs with African origins increases from 67.6%

in the control simulation to 74.1% in the perpetual La Niña simulation.

5.3.3 Significance of ENSO Phase

There is no significant difference in AEW activity or seasonal cycle between the per-

petual La Niña and the control simulations, regardless of whether diagnosed through

count or spectral statistics. There is a difference in the magnitude of the seasonal

cycle of developing AEW count, African TC count, and TC count signals for the

perpetual La Niña simulation, although the general distribution of events within the

seasonal cycle is the same as for the control simulation. These differences in magni-

tude present clearly in the August through October total counts of developing AEWs,

African TCs, and TCs, each of which shows a statistically significant increase from

the control to the perpetual La Niña simulation.

While these simulations suggest that AEW count is not strongly dependent on

ENSO state, the number of waves that develop clearly is, likely owing to changes in

the large-scale favorability. In the perpetual La Niña simulation, GPI increases are

especially concentrated in the MDR, and more TCs form there accordingly. Although

the perpetual La Niña simulation does not produce statistically significantly more

AEWs, a larger portion of TCs have their origins in AEWs. The percentage of

AEWs that develop is not fixed, nor do a certain percentage of TCs form from AEWs
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(a) La Niña

(b) Control

Figure 5.9: Tropical storm origins for the months of August through October for
twenty model years, for (a) the perpetual La Niña interannually invariant simulation,
and (b) the control interannually invariant simulation. Genesis points of storms
spawned by AEWs are shown as red dots, non-African storms as blue dots.
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regardless of the large-scale conditions. To the contrary, these simulations show that

environmental favorability can indeed be a limiting factor in the number of AEWs

that develop into TCs.

5.4 Summary

One theory in the existing literature is that AEW and TC count are both primarily

determined by environmental factors, and any covariance between the two is simply

due to the influence of changes in large-scale favorability (Caron and Jones, 2011).

However, the evidence shown above clearly demonstrates that this is not the case

in the HiRAM simulations, further strengthening the argument that AEWs play an

active role in determining TC variability.

The presence of TC count covariance coupled with the lack of covariance in AEW

count between climatological ensemble members, forced with identical historical SST

boundary conditions, indicates that there is significant AEW variability that is in-

dependent of the large-scale forcing. Separating the interannual variability of the

climatological simulations into that more closely linked with environmental fluctua-

tions (the ensemble average) and the stochastic component (the perturbation from

the ensemble average), the stochastic component of AEW variability shows significant

positive correlation with the corresponding TC variability. This provides further evi-

dence that variations in AEW count may explain a component of the TC variability

that remains unexplained by known environmental factors.

That is not to say that environmental factors are unimportant. The fact that a

statistically significant change in climatologically average TC count is evident between

simulations with the same average number of AEWs, namely the perpetual La Niña

and the control simulations, supports the notion that environmental factors conducive

to TC development are more important than the number of AEWs in determining the
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average number of TCs that form annually. Even so, the perpetual La Niña and the

control simulations both exhibit the same AEW-TC covariance on interannual scales

that was evident in the climatological simulations, even in the absence of interannual

variability in the SST forcing. This too supports a direct connection between AEW

count and TC count variability, and while this connection may be of secondary im-

portance to large-scale conditions when it comes to climatologically average counts,

it does seem to be independent of forcing via the SST boundary condition.

When the effects of interannual variability of the large-scale environment are di-

minished, either through considering the perturbation from the ensemble mean in

climatological simulations or through examination of simulations with interannually

invariant SSTs, it is clear that there is significant correlation between AEW and TC

counts. Overall, the model exhibits notable internal AEW variability, which explains

a significant portion of the TC variability unexplained by changes in SSTs.
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Chapter 6

Results: Perturbing the Environment to
Examine the Relationship between
Large-Scale Favorability, AEW Activity,
and TC Activity

By systematically varying the albedo of Africa, it is possible to perturb the large-scale

environment beyond current climatological variability and examine how changes in

AEW activity and overall environmental favorability interact and affect TC activity.

The focus of this chapter is on the suite of uniform albedo simulations, which share

the same control simulation as in Chapter 5. The four simulations in the suite have

interannually invariant climatological SSTs, as in the control simulation, but the

albedo over Africa is prescribed to be uniform. The simulations are numbered 1-4 in

order of increasing albedo, with albedos of 7.5%, 15%, 30%, and 45% (see Section 2.1.2

for more information).

First, the role of African albedo is assessed in Section 6.1, through comparison

with the control simulation (Section 6.1.1), an exploration of the model sensitivity to

the value of the albedo parameter (Section 6.1.2), and a cursory discussion of poten-

tial physical mechanisms at work (Section 6.1.3). Next, the effects of the large-scale

favorability and the AEW count on TC count are disentangled in Section 6.2, us-

ing GPI as a reference (Section 6.2.1), considering each of the components of GPI

separately (Section 6.2.2), and employing multiple linear regression techniques (Sec-
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tion 6.2.3). Finally, a summary of the results of the albedo simulations and their

relevance for understanding the relationship between AEW and TC activity is pro-

vided in Section 6.3. As in previous chapters, unless otherwise specified, the fields

and quantities discussed are averaged from August 1 through October 31 of all 20

years of the simulation to produce “annual” climatological averages.

6.1 The Role of African Albedo

The original motivation for manipulating African albedo was the idea that removing

the strong gradient in surface albedo might disrupt the surface temperature gradient

between the Sahara and the rainforest to its south, potentially weakening the AEJ. As

described further in Section 6.1.1, removing the albedo gradient alone does not have

a significant effect on the surface temperature gradient, the large-scale environment,

or AEW statistics in HiRAM. While the modeled atmosphere is not sensitive to the

gradient in the surface albedo, it is sensitive to the magnitude of the surface albedo.

The effects of varying the value of the albedo are discussed in Section 6.1.2. Since this

suite of simulations is novel, the bulk of this section is descriptive, with a preliminary

physical explanation for the model behavior in Section 6.1.3.

6.1.1 Comparing Control to a Uniform Albedo Simulation

In this section, the uniform albedo simulation with 30% albedo over the entire conti-

nent of Africa is compared against the control simulation with realistic surface albedo.

The surface albedos of northern Africa are shown in Figure 6.1. As noted in Sec-

tion 2.1.2, the albedo over Africa is not completely “uniform” in the experimental

simulations, as the soil albedo model has a dependence on azimuth angle and ge-

ographical variation in the direct to diffuse ratio of solar radiation. This accounts

for the weak gradient present in Figure 6.1a, which although non-zero, is trivial in

128



comparison with the strong gradient in albedo between the Sahel and the Sahara in

Figure 6.1b.

Despite the lack of a strong gradient in surface albedo, this uniform albedo sim-

ulation produces AEW and TC count statistics that are indistinguishable from the

control simulation (see Figure 6.2). The spectral measures of AEW activity are also

quite similar, with the differences in spectra shown in Figure 6.3 being largely within

the range of variability observed among the climatological ensemble members (recall

Figure 4.3). Although the percent of the power located in the 3-5 day band is larger

for the uniform albedo simulation than the control, 64.4% and 59.4% respectively,

the spectral centroid for both simulations is 3.68 days.

Figure 6.4 shows the genesis potential together with the spatial distribution of

all August through October genesis events (see Section 2.2.1 for more details about

GPI). By visual inspection, the differences in spatial distribution of the GPI in these

two simulations are within reasonable range of the level of variability found in the

climatological ensemble (recall Figure 4.7). The uniform albedo simulation does have

slightly lower GPI in the MDR in comparison to the control, with values of 1.4 and

1.6, respectively. This is reflected in the relatively lower concentration of genesis

events in the MDR and higher concentration in the subtropical northern Atlantic for

the uniform albedo simulation. Averaging over the entire Atlantic basin, the two

simulations each yield identical values of GPI (1.7) and statistically indistinguishable

TC count.

The limited impact of removing the surface albedo gradient speaks to the dis-

connection between surface and planetary albedo, and by extension, the importance

of the position and strength of the ITCZ. As the planetary albedos shown in Fig-

ure 6.5 indicate, the surface albedo in areas of convection is unimportant, because

the cloud cover dominates the planetary albedo. The surface albedo over northern

Africa, where there is limited cloud cover, does impact the planetary albedo, opening
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(a) “Uniform Albedo” (30%) Surface Albedo

(b) Control Surface Albedo

Figure 6.1: Average surface albedo for the months of August through October, for
(a) the uniform African albedo simulation with 30% albedo over Africa, and (b) the
control simulation with realistic African albedo.
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Figure 6.2: Modeled August through October average counts for African easterly
waves (AEW), developing African easterly waves (AEW-TC), African tropical storms
(TC-AEW), and all tropical storms (TC) for the control simulation (white) and the
uniform African albedo simulation with 30% albedo (orange). Error bars denote 95%
confidence intervals.

(a) “Uniform Albedo” (30%) (b) Control

Figure 6.3: Power spectrum of 1-10 day band-pass filtered meridional wind at 850
mb, averaged between 10◦N and 20◦N, at the coast of Africa (15◦W), for August 1
through October 31, for (a) the uniform African albedo simulation with 30% albedo
over Africa, and (b) the control simulation with realistic African albedo. The 3-5 day
band is highlighted in cyan.
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itself to manipulation as in Section 6.1.2. Despite very different surface albedo distri-

butions, given the current magnitude of the surface albedo, the 30% uniform albedo

and control simulations have strikingly similar planetary albedo.

Additional climatological fields for the uniform albedo simulation are shown with

the other members of the suite, including zonal wind at 600 mb (Figure 6.10) and

precipitation rate (Figure 6.11), which also show good agreement with the control for

30% albedo. To avoid belaboring the point, every field is not shown here, but visual

inspection of other climatological fields, including temperature, meridional velocity,

and zonal velocity, both for cross-sections at 5◦E and 10◦W, and at various levels over

Africa and the eastern Atlantic, reveals excellent agreement between the albedo simu-

lation with 30% albedo over the entire continent of Africa and the control simulation

with realistic surface albedo.

6.1.2 Sensitivity to Value of Uniform Albedo Parameter

While the gradient in the observed surface albedo over Africa does not seem to be of

critical importance due to overlying cloud cover dominating the planetary albedo in

the transition zone, as shown above in Section 6.1.1, the magnitude of the albedo in

the region of the Sahara does seem to impact the planetary albedo, and by extension

the overall model climate. In this section, the effects of variation in the surface albedo

parameter for the uniform albedo simulations are described, through examination

of several fields of interest over Africa and the Atlantic: the genesis potential and

associated genesis points, the zonal winds at the level of the AEJ core, and the

precipitation rates. Various quantitative measures of favorability and storm activity

are also discussed throughout and are summarized in Figures 6.12, 6.13, and 6.14 at

the end of the section.

Spatial plots of GPI are shown in Figure 6.6, with the difference between each

perturbed simulation and the control simulation shown in Figure 6.7. While it is
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(a) “Uniform Albedo” (30%) Planetary Albedo

(b) Control Planetary Albedo

Figure 6.5: Average planetary albedo for the months of August through October, for
(a) the uniform African albedo simulation with 30% albedo over Africa, and (b) the
control simulation with realistic African albedo.
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obvious from these figures that the basin-wide average GPI increases monotonically

with increasing albedo, it is also clear that it does not do so in a spatially uniform

fashion, with the MDR in particular exhibiting non-monotonic behavior. To clarify

this point quantitatively, Figure 6.12a provides a plot of basin-wide average GPI as

a function of albedo, and Figure 6.12b shows average GPI in the MDR, also as a

function of albedo.

The TC genesis points are shown in Figure 6.8, which follow the structure of the

GPI to a large extent, but also exhibit some differences. Total TC count increases

with increasing albedo, although unlike the GPI, it shows some indication of leveling

off (see Figure 6.14a). While the MDR GPI actually decreases from the penultimate

to ultimate albedo simulation (see Figure 6.12b), the number of TCs in the MDR

in the third and fourth albedo simulations are indistinguishable (see Figure 6.14b).

These differences from the GPI may be due to the competing effect of the AEW

count statistics, shown in Figure 6.9. While the basin-wide average GPI increases

monotonically and quite linearly with albedo (R2 = 0.982), the AEW count levels off

and is less linear (R2 = 0.803). The competing effects of GPI and AEW count are

examined more closely in Section 6.2.

AEW counts seem to scale with jet strength to some extent (see Figure 6.10), the

changes in which, in turn, are inversely proportional to the amount of precipitation

in the tropical rain belt associated with the ITCZ (see Figure 6.11). As is apparent in

Figure 6.10, with increasing albedo, the AEJ core shifts equatorward and westward,

while also strengthening. The rain belt also shifts equatorward, but weakens with

increasing albedo in Figure 6.11.

For brevity, spatial plots of the components of GPI are not shown here, but their

average values, both in the entire Atlantic basin (left column) and in the MDR (right

column), are plotted against the uniform albedo parameters in Figures 6.12 and 6.13.

The components of GPI include the relative humidity at 600 mb in units of percent
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Figure 6.9: Modeled August through October average counts for African easterly
waves (AEW), developing African easterly waves (AEW-TC), African tropical storms
(TC-AEW), and all tropical storms (TC) for the uniform African albedo simulations,
with albedos of 7.5% (dark green), 15% (light green), 30% (orange), and 45% (yellow),
and the control simulation (white). Error bars denote 95% confidence intervals.

(Figure 6.12c, d), the maximum potential intensity in units of m s−1 (MPI; Bister

and Emanuel 2002; Figure 6.12e, f), the vertical wind shear between 850 and 200 mb

in units of m s−1 (Figure 6.13a, b), and the absolute vorticity at 850 mb in units of

s−1 (Figure 6.13c, d). More details on these parameters and the spatial averaging can

be found in Section 2.2.1.

Both the relative humidity in the entire basin and the relative humidity in the

MDR have a direct relationship with African albedo (see Figure 6.12c, d). The pat-

tern of maximum potential intensity in the Atlantic is quite different from that in the

MDR, with neither showing completely monotonic response to albedo changes (see

Figure 6.12e, f). The shear generally decreases with increasing albedo up through

30% albedo, but levels off in the case of the entire Atlantic, or rebounds from there

in the case of the MDR (see Figure 6.13a, b). The absolute vorticity in the MDR

has an inverse relationship with albedo (see Figure 6.13d), which likely reflects the

weakening of the ITCZ, but shows no clear pattern for the basin-wide average (see

Figure 6.13c). The explanatory power of each of these component fields in under-
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standing the differences in TC count variability between the members of the uniform

albedo suite is diagnosed in Section 6.2.2.

6.1.3 Physical Relevance of Albedo

Much of the contemporary literature suffers from the lack of a common vernacular to

discuss the relationships between tropical phenomena, with unresolvable discrepan-

cies between the definitions of AEWs and the ITCZ in particular (Nicholson, 2009).

This makes it difficult to conduct a meta-analysis to construct narratives that pro-

vide conceptual explanations of the interrelated dynamics of the AEJ, ITCZ, and

AEWs. For this reason, the below explanation is fairly speculative and further study

is required to understand the physical mechanism of the atmosphere’s sensitivity to

African albedo when it comes to AEWs. Since the potential connection between the

albedo, the AEJ, and AEWs are a means to an end, this connection is only discussed

briefly below.

Given the above caveats, there are two general “modes” in West Africa, namely

“wet years” that are typified by a weaker and more poleward AEJ, and “dry years”

typified by a stronger and more equatorward AEJ (Grist and Nicholson, 2001; Nichol-

son and Grist, 2001). Wet years are also associated with a stronger West African

Westerly Jet (WAWJ), located around 10◦N, near the surface, from the eastern At-

lantic toward the West African coast (Pu and Cook, 2012). Grist et al. (2002) found

that in wet years AEWs tend to be stronger but have longer periods, although the

direction of causality was not clear. Relatedly, Thorncroft and Rowell (1998) found

that AEW activity is positively correlated with the strength of the AEJ. These re-

sults taken together indicate that as the AEJ shifts equatorward and strengthens (as

it does in the dry mode), one would expect AEW activity to increase. Although it

seems the ITCZ also plays a pivotal role (Hsieh and Cook, 2005), due to incompat-

ible definitions of the ITCZ, it is difficult to speculate precisely how. For example,
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(a) Atlantic GPI vs. Albedo (b) MDR GPI vs. Albedo

(c) Atlantic Relative Humidity vs. Albedo (d) MDR Relative Humidity vs. Albedo

(e) Atlantic MPI vs. Albedo (f) MDR MPI vs. Albedo

Figure 6.12: Quantitative measures of large-scale favorability, including the genesis
potential index (GPI; a and b), relative humidity at 600 mb in units of percent (c and
d), and maximum potential intensity in units of m s−1 (MPI; Bister and Emanuel,
2002; e and f), averaged over the entire Atlantic basin (left) and the MDR (right).
Definitions and details of the spatial averaging can be found in Section 2.2.1.
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(a) Atlantic Shear vs. Albedo (b) MDR Shear vs. Albedo

(c) Atlantic Vorticity vs. Albedo (d) MDR Vorticity vs. Albedo

Figure 6.13: Quantitative measures of large-scale favorability, including the vertical
wind shear between 850 and 200 mb in units of m s−1 (a and b) and absolute vorticity
at 850 mb in units of s−1 (c and d), averaged over the entire Atlantic basin (left) and
the MDR (right). Definitions and details of the spatial averaging can be found in
Section 2.2.1.
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(a) Atlantic TC Count vs. Albedo (b) MDR TC Count vs. Albedo

(c) AEW Count vs. Albedo

Figure 6.14: Average annual (ASO) count of (a) Atlantic TCs, (b) MDR TCs, and
(c) AEWs, plotted by surface albedo value over Africa.

Nicholson and Grist (2001) found the equatorward shift of the AEJ in dry years to

be associated with the equatorward shift of the ITCZ.

Similar patterns as those described above arise climatologically in the perturbed

albedo simulations. In the uniform albedo simulations, there is a direct relationship

between the strength of the precipitation belt associated with the ITCZ and the

strength of the WAWJ, which are inversely related to the strength of the AEJ. As the

albedo increases, the ITCZ shifts equatorward and weakens, the WAWJ weakens, and

the AEJ shifts equatorward and strengthens in turn. As the AEJ shifts equatorward

and strengthens, the AEW count increases. In general, it seems increasing the African

albedo has a similar effect as transitioning from the wet mode to the dry mode. This
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makes physical sense and is consistent with Charney’s albedo-precipitation feedback

hypothesis (Charney, 1975). Charney found that increasing the albedo of north Africa

from 14% to 35% in an early GCM led to the ITCZ shifting equatorward several

degrees.

The Sahel experienced extreme drought conditions in the 1970s and 1980s, and

while for a time this was thought to be due to anthropogenic desertification and

the albedo-precipitation feedback, the current consensus is that any desertification

that may have occurred would not be enough to account for the observed changes in

rainfall, and changes in ocean temperatures are more likely the primary cause (Folland

et al., 1986; Nicholson et al., 1998; Giannini et al., 2003; Held et al., 2005). Whether

through ocean temperature changes or land mass changes, there is a strong body

of evidence supporting the notion that the ITCZ tends to be displaced toward the

anomalously warm hemisphere (Broccoli et al., 2006; Kang et al., 2008, 2009; Kang

and Held, 2012; Kang et al., 2014). In the uniform albedo simulations, increasing

the albedo generally leads to cooling, as a greater proportion of incident radiation

is reflected. This cooling is disproportionately located to the northern hemisphere,

specifically northern Africa, due to differences in land mass and cloud cover. As

the surface in the northern hemisphere cools, the ITCZ shifts southward due to the

return flow of the anomalous Hadley circulation (Kang et al., 2009). The origins of

the associated weakening of the ITCZ with its equatorward shift could be in part due

to the fact that the SSTs are prescribed in the model, and so as the ITCZ shifts, it

moves away from the typically collocated SST relative maximum.

While this is somewhat speculative, the preliminary explanation of the the phys-

ical relevance of the albedo is now summarized. As the African albedo increases in

the uniform albedo simulations, this triggers anomalous cooling in northern Africa.

Anomalous cooling in the northern hemisphere leads to a southward shift of the ITCZ.

These changes are similar to moving from a climatology that resembles the wet mode
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toward something resembling the dry mode, increasing the strength of the AEJ and

leading to more AEW activity. Further study is necessary to better asses the validity

of this explanation. This is left to future work, since the focus of this dissertation is

on the relationship between AEW activity, large-scale favorability, and TC activity,

not on the origins of or controls on AEWs. As detailed in the previous sections,

increasing African albedo leads to increases not only in AEW activity, but also in the

genesis potential of the Atlantic. The relevance of these factors to TC variability is

discussed in the following section.

6.2 Importance of Large-Scale Favorability and

AEW Count for TC Count

Manipulating the value of the surface albedo over Africa in the uniform albedo sim-

ulations has successfully perturbed the annual AEW count significantly beyond the

interannual variability observed climatologically (recall Figure 6.9). Since this manip-

ulation also led to significant changes in the GPI (recall Figures 6.6, 6.7, and 6.12),

the ultimate changes in average TC count cannot immediately be ascribed to these

changes in AEW count. This section is dedicated to disentangling and quantifying

the relative importance of the AEW count and large-scale environmental factors in

explaining TC count.

As shown in Figure 6.15, annual TC count is well correlated with annual AEW

count across members of the uniform albedo suite, both for the total Atlantic basin

TC count (R2 = 0.955, p = 0.023), and the count of TCs that formed in the MDR

(R2 = 0.998, p = 0.0012). It is worth noting that as in all previous sections, all

uniform albedo simulations also exhibit statistically significant interannual correlation

between AEW count and TC count, with coefficients of determination of consistent
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(a) Atlantic TC Count vs. AEW Count (b) MDR TC Count vs. AEW Count

Figure 6.15: Scatterplots of uniform albedo simulation suite members’ average annual
(ASO) TC count versus AEW count, for (a) all Atlantic TCs, and (b) only TCs that
formed in the MDR.

magnitude with the control simulation (see Section 5.2). Note too that all simulations

have interannually invariant SST, like the control.

The TC count also shows correlation with GPI, both averaged over the MDR and

the entire Atlantic basin. Figure 6.16 shows Atlantic TC count (a; R2 = 0.974, p =

0.013), MDR TC count (b; R2 = 0.871, p = 0.067), and AEW count (c; R2 = 0.874,

p = 0.065) versus Atlantic GPI. While the linear regression between Atlantic TC count

and Atlantic GPI returns a statistically significant positive correlation coefficient at

the 95% confidence level, the MDR TC count and AEW count correlations with the

Atlantic GPI are not statistically significant. Similarly, Figure 6.17 shows Atlantic

TC count (a; R2 = 0.921, p = 0.040), MDR TC count (b; R2 = 0.973, p = 0.014),

and AEW count (c; R2 = 0.986, p = 0.0069) versus MDR GPI, all three of which

exhibit statistically significant positive correlation at the 95% confidence level.

It is reasonable that better correlations are found between MDR GPI and MDR

TC and AEW counts than for the basin-wide GPI, since a greater percentage of TCs

in the MDR are spawned by AEWs and are therefore more sensitive to changes in

AEW count. It is worth noting that since GPI was designed to correlate with TC

count, it is possible that the index itself might be contaminated by actual genesis
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(a) Atlantic TC Count vs. Atlantic GPI (b) MDR TC Count vs. Atlantic GPI

(c) AEW Count vs. Atlantic GPI

Figure 6.16: Scatterplots of average annual (ASO) count statistics versus average
Atlantic GPI for the uniform albedo simulation suite, including (a) all Atlantic TCs,
(b) only TCs that formed in the MDR, and (c) AEWs.

events, thereby making it impossible to observe a change in TC activity without a

corresponding change in GPI.

6.2.1 Removing the Effect of GPI by Regression

Since Section 6.2 demonstrates that there are statistically significant correlations

between both GPI metrics and TC count, AEW count and TC count, and even AEW

count and MDR GPI, in order to discern if AEW provides any skill beyond GPI in

explaining TC count, both AEW and TC average annual counts are detrended by GPI

in this section, and the residuals are correlated. By similar logic as in Section 5.1.2,

149



(a) Atlantic TC Count vs. MDR GPI (b) MDR TC Count vs. MDR GPI

(c) AEW Count vs. MDR GPI

Figure 6.17: Scatterplots of average annual (ASO) count statistics versus average
MDR GPI for the uniform albedo simulation suite, including (a) all Atlantic TCs,
(b) only TCs that formed in the MDR, and (c) AEWs.

this isolates the AEW and TC activity signals that remain unexplained by the large-

scale environment as communicated by GPI, but this time at the climatological level

rather than the interannual level.

First, the AEW and TC counts are detrended by basin-wide Atlantic GPI and

the residuals are plotted in Figure 6.18. For the total TC count and the AEW count

residuals (Figure 6.18a), the coefficient of determination is R2 = 0.913 with a p-value

of p = 0.044, which is statistically significant at the 90% confidence level. The cor-

relation is even stronger when considering MDR TC count and AEW count residuals

(Figure 6.18b), significant at the 95% confidence level, with a coefficient of determi-
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(a) Atlantic TC Residual vs. AEW Residual (b) MDR TC Residual vs. AEW Residual

Figure 6.18: Scatterplots of average annual (ASO) TC count residuals versus AEW
count residuals, detrended by Atlantic GPI, for (a) all Atlantic TCs, and (b) only
TCs that formed in the MDR.

nation of R2 = 0.981 and a p-value of p = 0.0097. To be fair, it would be surprising

if AEW count did not provide skill beyond the Atlantic GPI in explaining MDR TC

count, since MDR TC count is expected to scale with MDR GPI, which responded

differently to the albedo changes than the basin-wide GPI (recall Figure 6.12a and

b). On the other hand, it is notable that AEW count seems to provide statistically

significant additional skill beyond Atlantic GPI in explaining total TC count, since

Atlantic GPI is expected to correlate closely with total TC count by design.

Similarly, AEW and TC counts are detrended by MDR GPI and the residuals

are plotted in Figure 6.19. Although it does not make a great deal of physical sense

to detrend basin-wide TC counts by MDR GPI, this is shown for completeness in

Figure 6.19a. There is no detectable correlation between Atlantic TC count and

AEW count detrended by MDR GPI (R2 = 0.552, p = 0.26). On the other hand, even

though MDR GPI explains over 97% of the variance in MDR TC count, AEW and

MDR TC count residuals detrended for MDR GPI (Figure 6.19b) have an impressive

coefficient of determination (R2 = 0.994, p = 0.0032), significant with over 95%

confidence.
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(a) Atlantic TC Residual vs. AEW Residual (b) MDR TC Residual vs. AEW Residual

Figure 6.19: Scatterplots of average annual (ASO) TC count residuals versus AEW
count residuals, detrended by MDR GPI, for (a) all Atlantic TCs, and (b) only TCs
that formed in the MDR.

The above evidence suggests that AEW count may indeed provide additional skill

beyond the state of the large-scale environment in explaining the climatologically

average annual TC count in the uniform albedo simulations. To strengthen this

argument, the components of GPI are considered separately below in Section 6.2.2.

6.2.2 Considering GPI Components Separately

Following similar procedures as above in Section 6.2.1, residuals were considered for

all favorability indicators detrended by GPI, for both the MDR and the basin-wide

averages. Of AEW count, absolute vorticity, relative humidity, potential intensity,

and vertical wind shear (see Section 2.2.1 for definition of GPI and its components),

the AEW count residuals are the only residuals to show significant correlation with

TC count residuals.

The intra-simulation variance in each of the indicators of favorability is also com-

pared directly to that of TC count, MDR TC count, and AEW count, and the co-

efficients of determination and p-values are shown in Table 6.1 for the basin-wide

averages. Statistical significance at the 95% confidence level is denoted with an aster-
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isk, and following the correlation with the total GPI value (which was also discussed

in the opening of this section above, Section 6.2), the large-scale environmental com-

ponents are listed in order of decreasing importance. The coefficients of determination

and p-values for the total TC count are shown in bold, since averaging indicators of

large-scale environmental favorability over the entire Atlantic basin makes them the

most relevant.

Table 6.1: Linear Correlation between Atlantic GPI Components and Counts

Total TC Count MDR TC Count AEW Count
Component of GPI R2 p-value R2 p-value R2 p-value

Total Atlantic GPI 0.974* 0.013 0.871 0.067 0.874 0.065
Relative Humidity H 0.979* 0.010 0.882 0.061 0.878 0.063
Wind Shear Vshear 0.933* 0.034 0.945* 0.028 0.964* 0.018
Potential Intensity Vpot 0.909* 0.046 0.975* 0.013 0.987* 0.007
Absolute Vorticity η 0.493 0.298 0.359 0.401 0.394 0.372

* asterisk denotes statistically significant with 95% confidence

The relative humidity exhibits the strongest covariance, even compared with the

total GPI, although the confidence intervals overlap with those of GPI. Notably,

while all the other components of GPI (humidity, shear, and potential intensity)

show statistically significant correlation with total TC count, the absolute vorticity

shows no correlation with TC or AEW counts.

Similar to Table 6.1, intra-simulation variance for indicators of favorability aver-

aged over just the MDR are compared to count variance in Table 6.2. This time, the

coefficients of determination and p-values for the MDR TC count are shown in bold,

since averaging indicators of large-scale environmental favorability over the MDR

makes these most relevant. Statistical significance at the 95% confidence level is de-

noted with an asterisk, and following the correlation with the MDR GPI value (which

was also discussed above in Section 6.2) the large-scale environmental components are

listed in order of decreasing importance.
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Table 6.2: Linear Correlation between MDR GPI Components and Counts

Total TC Count MDR TC Count AEW Count
Component of GPI R2 p-value R2 p-value R2 p-value

Total MDR GPI 0.921* 0.040 0.973* 0.014 0.986* 0.007
Relative Humidity H 0.950* 0.025 0.829 0.089 0.821 0.094
Absolute Vorticity η 0.898 0.052 0.742 0.139 0.739 0.140
Potential Intensity Vpot 0.554 0.256 0.351 0.408 0.344 0.414
Wind Shear Vshear 0.041 0.798 0.000 0.998 0.000 0.994

* asterisk denotes statistically significant with 95% confidence

With the exception of MDR GPI, none of the individual indicators of large-scale

favorability in the MDR show statistically significant covariance with MDR TC count.

Relative humidity comes closest, with a 95% confidence interval of -0.404 < R <

0.998. Due to the small sample size, correlations must be very strong in order to

achieve statistical significance with so few degrees of freedom. Similar to Section 6.2.1,

detrending AEW and TC counts for MDR relative humidity in place of GPI, the

residual AEW and TC counts exhibit statistically significant covariance, both for

MDR TC count (R2 = 0.987, p = 0.007) and total TC count (R2 = 0.993, p = 0.003).

It is not possible to determine whether any of these large-scale environmental

favorability measures could be contaminated by the TCs or AEWs themselves, which

could account for a portion of the covariance between the indicators of favorability

and the TC activity, but AEW count has again been shown to add additional skill.

Although not presented in detail above, regardless of which large-scale favorability

factor is chosen to detrend for environmental impacts, AEW and TC count residuals

show statistically significant positive correlation, either for MDR totals, the entire

basin, or both. This is taken a step further in the next section, in which stepwise

linear models are constructed using environmental favorability metrics and AEW

count as predictors for TC counts.
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6.2.3 Multiple Linear Regression of TC Count

Since the above sections demonstrate that AEW count, GPI, and the components of

GPI all covary with climatological TC count across the uniform albedo suite of sim-

ulations, and there is evidence that AEW count provides skill above and beyond the

environmental factors, the focus of this section is quantifying this level of skill using

multiple linear regression. When given the option of all possible predictors, AEW

count, and both MDR and basin-wide GPI, relative humidity, potential intensity,

shear, and absolute vorticity, a stepwise linear regression model chooses only AEW

count for the MDR TC count predictand, and both relative humidity (RH) and AEW

count for the basin-wide TC count predictand.

As mentioned above in the opening of Section 6.2, the coefficient of determination

for a linear model of MDR TC count versus AEW count is R2 = 0.998, with a

corresponding p-value of p = 0.0012. Although other predictors show correlation with

MDR TC count individually, AEW count alone is the best predictor of climatological

MDR TC count across these uniform albedo simulations. For the total Atlantic TC

count, a linear model of the form TC ∼ 1 + RH + AEW yields an adjusted R2 =

0.99997, with p = 0.0034. The coefficients of the resulting linear model are discussed

in Section 7.2. For reference, relative humidity alone yields an adjusted R2 = 0.969

(p = 0.010) and the AEW count alone yields an adjusted R2 = 0.933 (p = 0.023).

The p-value to accept AEW count as an additional predictor in the stepwise model

is p = 0.015, which demonstrates that AEW count provides a statistically significant

improvement over relative humidity alone.

6.3 Summary

In this chapter, the annual climatological AEW count and the large-scale environ-

ment are successfully manipulated far beyond climatological variation through the
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alteration of African albedo. Somewhat surprisingly, the model is not very sensitive

to the gradient in surface albedo found between the Sahara and the rainforest to its

south, as a simulation with a uniform surface albedo of 30% over Africa produces

results very similar to the control simulation with realistic albedo. However, there

are strong sensitivities to the magnitude of the uniform albedo. These sensitivities

are exploited to produce novel regimes and determine to what extent changes in TC

count between these regimes might be attributed to changes in AEW count.

The suite of four uniform albedo simulations generally exhibit increased AEW ac-

tivity and increased environmental favorability with increasing albedo. The changes

to the large-scale environment are similar to what is expected when transitioning

from a “wet mode” to a “dry mode” over western Africa. Although somewhat spec-

ulative, it seems that anomalous cooling, caused by greater reflectance of insola-

tion in the northern hemisphere, shifts the ITCZ southward due to the return flow

of the anomalous Hadley circulation, leading the AEJ to also shift southward and

strengthen, producing more AEWs.

Although there are only four simulations in the uniform albedo suite, there is a sta-

tistically significant linear relationship between AEW count and TC count. However,

there is also a statistically significant relationship between measures of environmen-

tal favorability and TC count, including GPI, relative humidity, vertical wind shear,

and potential intensity. While GPI is commonly used as an indicator of favorabil-

ity, e.g., in Caron and Jones (2011), it is an imperfect measure and there might be

other environmental factors at play that could be forcing AEWs and TCs to covary.

It is also possible that some of the measures of environmental favorability could be

contaminated by TCs or AEWs themselves and this could account for a portion of

the covariance, but through detrending and through stepwise linear regression, AEW

count still shows additional skill over the metrics used here to diagnose the large-scale

environment.
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Chapter 7

Considering All Modeled Results
Holistically

The relationship between AEWs and TCs in HiRAM is probed in various ways in

Chapters 4 through 6, on multiple timescales and using a variety tools to isolate

the importance of the AEW activity and separate it from the effects of the large-

scale favorability on TC activity. Chapter 4 examines the climatological simulations,

comparing the interannual relationship between AEW count and TC count in the

model to the historical relationship determined in Chapter 3 from NCEP-NCAR II

Reanalysis and IBTrACS, using ENSO phase and annual trends as a lens into inter-

annual changes in the large-scale environment historically. In Chapter 5, the internal

variability in the AEW-TC relationship is isolated by considering the interannual

variation in the perturbation from the climatological ensemble mean, and analyzing

control and perpetual La Niña simulations with interannually invariant SSTs. Fi-

nally, in Chapter 6 the relationship between AEW count and TC count is considered

on a climatological rather than interannual timescale, using GPI and its components

as indicators of the large-scale favorability in climates drastically different from the

present.

All of the simulations discussed throughout Chapters 4 through 6 are considered

together here, including all experiments: the climatological simulations (H1, H2, and

H3), the control and perpetual La Niña simulations, and the four uniform albedo
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simulations. This is done to both show consistency between and to extend the re-

sults from the preceding chapters. First, the relationship between AEW count and

TC count is considered interannually, as totals from every model year are examined

(Section 7.1). Next, this relationship is considered climatologically, as average annual

counts from each simulation are examined (Section 7.2). Following this comprehen-

sive assessment of the model results, the major findings are summarized briefly in

Section 7.3.

7.1 The Interannual Relationship between AEW

and TC Count

While each individual simulation does reveal statistically significant positive interan-

nual correlation between AEW count and TC count, the associated lines of best fit

are not well-constrained due to relatively small sample sizes, since the simulations

discussed in Chapters 4 through 6 were either 20 or 28 years long and exhibit marked

interannual variability. Section 5.1.2 is an exception, since there were 84 model years

pooled together, as perturbations from the climatological ensemble mean were consid-

ered to evaluate the stochastic component of AEW activity. In general, the correlation

coefficient between AEW count and TC count is consistently positive with 90% or

greater confidence for each individual simulation, but the slope and intercept of the

line of best fit varies drastically between simulations. For this reason, all model years

are pooled across simulations here, to better quantify and constrain the interannual

relationship between AEW and TC count.

In Section 4.4 and 4.5, it is apparent that ENSO phase as diagnosed by SST

anomalies (see Appendix B) correlates with TC activity on interannual timescales

in the climatological simulations, but all additional model runs (the control simula-

tion, the perpetual La Niña simulation, and the uniform albedo simulations) have
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climatologically invariant SSTs, and therefore ENSO cannot be used as an indicator

of interannual variability of large-scale favorability for these simulations. Section 6.2

indicates that relative humidity in the mid-troposphere is a useful measure of cli-

matological large-scale favorability in drastically different climates, but as Bruyère

et al. (2012) show, GPI and relative humidity do not correlate well with TC activity

interannually and thus may not adequately represent environmental favorability on

these timescales.

In the absence of a convincing interannual measure of environmental favorability

across all suites of simulations, the relationship between AEW count and TC count

is considered here, without explicitly regressing out the effects of ENSO, GPI, or oth-

erwise accounting for potential large-scale influences. This differs from Section 5.1.2,

where the variance is explicitly separated into the part due to environmental variabil-

ity and the stochastic component in the climatological ensemble. Figure 7.1 includes

the annual (ASO) TC count versus the annual AEW count for every model year of

every simulation, for a total of N = 204 model years.

Although the various simulations do not all share similar large-scale environments,

the correlation between annual TC and AEW count across simulations is extremely

significant, with R2 = 0.395 and p = 8.5 × 10−24 (see Figure 7.1). In other words,

about 40% of the variance in annual TC count in HiRAM simulations is explained by

annual AEW count variability, although a portion of this is associated with changes in

large-scale variability that affect both AEW and TC count (see Section 5.1.2). Least

squares regression returns the following line of best fit:

TC = 1.60 + 0.51 · AEW, (7.1)

where TC is the annual number of TCs, and AEW is the annual number of AEWs in

August through October.
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Figure 7.1: Scatterplot of annual August through October TC count versus AEW
count, for every model year of every simulation discussed in any of the previous chap-
ters, including the climatological simulations (H1, H2, and H3), the control simula-
tion, the perpetual La Niña simulation, and the uniform albedo simulations (uniform
albedo 1, 2, 3, and 4), for a total of 204 model years. The shading of the dots indi-
cates the number of years with the given number of TCs and AEWs, ranging from
one (light gray) to nine (black), with line of best fit plotted in black.

AEWs are not completely absent in any model year, but Equation 7.1 implies that

if there were no AEWs in the model, there would be an average of 1.60 TCs annu-

ally. Further, for each additional AEW, there would be an average of 0.51 additional

TCs annually, due to a combination of the stochastic variability in AEW count itself

and covariation of AEW and TC counts forced by the environment. The analysis in

Section 5.1.2 reveals that each AEW above and beyond the average number, purport-

edly determined by the large-scale environment, has approximately a 1 in 4 chance

of developing into a TC. Applying this finding to the present analysis suggests that

about half of the influence of AEW count on TC count is mediated by environmental
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favorability (0.51-0.25=0.26), while the other half may be due to stochastic AEW

variance.

Applying Equation 7.1 to “predict” climatological TC counts given climatologi-

cal AEW counts compares favorably with the climatological simulation average TC

counts and the reanalysis-derived historical record. With the average number of

AEWs varying annually between 13.32 and 14.14 for the three climatological ensem-

ble members, using Equation 7.1, one would expect between 8.39 and 8.81 TCs per

year. This is within the error bars of the climatological ensemble members’ annual TC

counts, for which there are actually between 9.07 and 9.36 TCs, and interannual vari-

ability results in a 95% confidence interval of ±0.90 (see Figure 4.2). Although Equa-

tion 7.1 provides a reasonable fit for climatologically average AEW and TC counts

in simulations with climates similar to the present day, this relationship breaks down

when applied to the perpetual La Niña and the highest uniform albedo simulation

on a climatological timescale. This is likely because the changes to the large-scale

environment are more drastic in these cases, and thus the influence of environmental

favorability is more important than the interannual relationship between AEW and

TC count.

Like Figure 7.1, Figure 7.2 also includes the annual (ASO) TC count versus the

annual AEW count for every model year of every simulation, but partitioned by TC

origin type, with African TC counts in Figure 7.2a and non-African TC counts in

Figure7.2b. The lines of best fit for African TC count and non-African TC count

versus AEW count are given by:

African TC = 0.12 + 0.45 · AEW, and (7.2)

Non-African TC = 1.48 + 0.06 · AEW, (7.3)
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where African TC is the annual number of TCs that have their origins in AEWs,

Non-African TC is the annual number of TCs that do not have African origins of any

kind, and AEW is the annual number of AEWs in August through October.

Annual non-African TC count is only very weakly correlated with AEW count,

with a coefficient of determination of R2 < 0.02, which is significantly positive at

the 90% but not 95% confidence level, with p = 0.059. The shallow slope evident

in Figure 7.2b and Equation 7.3 (for every additional AEW, one would only expect

an average of 0.06 additional non-African TCs annually), demonstrates that AEW

variability has little net influence on the number of TCs without African origins.

There are a number of possible competing factors at play, including environmental

favorability and trade-offs with African TC development. However, there is no cor-

relation between non-African TC count and African TC count interannually across

simulations (R = -0.01, p = 0.78).

Elevated AEW activity could potentially increase the total number of TCs, while

also decreasing the fraction or number of TCs that do not have African origins.

Although not ubiquitously (the perpetual La Niña simulation being a potential ex-

ception), increased environmental favorability is typically associated with an increase

in the climatologically average level of AEW activity across simulations, so one might

expect a significant positive relationship between AEW counts and any subset of TC

counts, mediated by large-scale conditions. On the other hand, the impacts of chang-

ing AEW activity and environmental favorability on TC formation are not spatially

uniform, as shown in Figure 6.8. In Kossin and Vimont (2007), shifts in cyclogen-

esis regions are shown to affect the overall number of storms. This is likely due to

differences in the local environments as well as proximity to suitable seeds, such as

AEWs. As is clear from Figure 4.8, African and non-African TC origin points are not

concentrated in the same areas and thus are not necessarily responding to the same
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environmental influences, which may contribute to the lack of correlation between the

two.

Because all TCs are either African or non-African, the slopes and intercepts of

the lines of best fit for African TC count versus AEW count (Equation 7.2) and non-

African TC count versus AEW count (Equation 7.3) sum to that for the total TC

count versus AEW count (Equation 7.1). As evident in Equations 7.2 and 7.3, the

vast majority of the increase in TC count associated with increasing AEW count can

be attributed to storms that have African origins.

7.2 The Climatological Relationship between

AEW and TC Count

The major results originally described in Section 6.2.3 are applied here to assess

whether the findings from the uniform albedo suite explain the climatological average

AEW and TC counts in all of the simulations explored in Chapters 4 through 6.

Figure 7.3 shows the average annual (ASO) TC count versus the average annual AEW

count for each simulation, including error bars denoting 95% confidence intervals on

both counts, which give an indication of the level of interannual variability within

each simulation.

Unfortunately, pooling all of the simulations together in this fashion does not pro-

vide new insight above and beyond the conclusions drawn from the uniform albedo

simulations alone in Chapter 6, because there is strong overlap in the AEW and TC

count error bars for the climatological simulations, the control simulation, the perpet-

ual La Niña simulation, and two of the uniform albedo simulations (See Figure 7.3).

The multiple linear regression in Section 6.2.3 yields the following model:

TC = 4.13 + 0.80 · (RH− RHc) + 0.56 · AEW, (7.4)
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where TC is the average annual number of TCs in August through October, RH is

the basin-wide climatologically average August through October relative humidity at

600 mb in percent, RHc is RH for the control simulation, and AEW is the average

annual number of AEWs in August through October.

Even though constructed using only the uniform albedo simulations, Equation 7.4

provides a good fit for the climatologically average counts in all simulations. The

TC counts predicted by Equation 7.4 exhibit strong correlation with the actual TC

counts in the simulations, with R2 = 0.933 and p = 1.7 × 10−3. Although it is clear

that environmental favorability, as communicated through relative humidity, plays an

important role in determining average TC count in HiRAM, the direct relationship

between AEW count and TC count itself in Figure 7.3 is striking. Correlating the

climatologically average TC counts and the AEW counts across simulations yields a

coefficient of determination of R2 = 0.918 (p = 2.6× 10−3).

Equation 7.4 implies that if relative humidity is the same as in the control simula-

tion and there are no AEWs, there would still be an average of 4.13 TCs per year. This

is greater than the corresponding value from the interannual regression (the intercept

of Equation 7.1), perhaps due to the implicit connection between AEW count and

relative humidity. If Atlantic relative humidity and AEW count are linked to some

degree, it would be unlikely to have zero AEWs without a corresponding decrease in

relative humidity. This would lead to fewer than 4.13 TCs per year in the limiting

case with zero AEWs. While this interpretation may strengthen the argument that

AEW count and relative humidity covary, this does not imply that the AEW-TC re-

lationship is necessarily fully determined by environmental favorability. As discussed

in Sections 6.2.2 and 6.2.3, AEW count does indeed provide additional information

beyond the large-scale environment as diagnosed by Atlantic basin relative humidity.

All else equal, Equation 7.4 also implies that the number of additional TCs ex-

pected for a climate with an average increase of one AEW per year is 0.56. This
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Figure 7.3: Scatterpot of climatologically average annual August through October
TC count versus AEW count for the reanalysis-derived historical record and for each
of the simulations discussed in any of the previous chapters, including the climato-
logical simulations (H1, H2, and H3), the control simulation, the perpetual La Niña
simulation, and the uniform albedo simulations (uniform albedo 1, 2, 3, and 4). Error
bars denote 95% confidence intervals.

compares well with the results from the interannual analysis in Section 7.1, in which

Equation 7.1 implies that there would be an average of 0.51 additional TCs annually

for each additional AEW. In both cases, a portion of this number is likely mediated by

changes in environmental favorability, but as argued in Section 7.1 using the analysis

from Section 5.1.2, as much as half of the influence of AEW count on TC count may

be due to stochastic AEW variance.

7.3 Summary

In this chapter, the simulations examined in Chapters 4 through 6 are considered

together as a comprehensive unit, showing consistency between simulations and ex-

tending key results discussed in earlier chapters. Count totals from every model year
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are examined to quantify the interannual relationship between AEW count and TC

count, and climatological averages from each simulation are examined to quantify the

contribution of relative humidity and AEW count in determining average TC count.

Without correcting for the effects of the environmental favorability, on average 1

in 2 AEWs contribute an additional TC annually across simulations, due to a combi-

nation of stochastic interannual variability in AEW count itself and the covariation

between AEW and TC count forced by the environment. Considering this together

with the result from Section 5.1.2, that each AEW above and beyond the number

determined by the large-scale environment has a 1 in 4 chance of developing into

a TC in the climatological simulations, suggests that about half of the influence of

AEW count on TC count is mediated by environmental favorability and half is due

to stochastic AEW variability in the model. Further, almost all of the net change in

TC count associated with AEW count changes can be attributed to storms that have

African origins. AEW variance has very little net effect on the number of storms that

do not have origins associated with AEWs.

The result originally described in Section 6.2.3, the multiple linear regression

model of TC count with relative humidity and AEW count serving as predictors

for the uniform albedo simulations, shows skill when applied to the climatologically

average AEW and TC counts across simulations. Unfortunately, the addition of

the climatological, control, and perpetual La Niña simulations does not provide new

insight above and beyond the original result, since there is strong overlap in AEW

and TC count error bars. Comparing this climatological model (Equation 7.4) to

the interannual model (Equation 7.1) provides further evidence that AEW count and

relative humidity covary, but that AEW count provides additional skill over basin-

wide average relative humidity in predicting climatologically average TC count.
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Chapter 8

Conclusion

The major findings of this study are summarized briefly in Section 8.1, followed by

possible directions for future work in Section 8.2. It is argued that the evidence pre-

sented strongly supports the notion that not only does African easterly wave (AEW)

activity exhibit variance on interannual and climatological timescales that is corre-

lated with Atlantic tropical storm (TC) activity variance, but the relevance of AEW

count to TC count is not exclusively determined by large-scale environmental factors.

8.1 Summary

After reviewing the state of the field and motivating the study of the relationship be-

tween AEW and TC variability in Chapter 1, novel analysis techniques were designed,

tested, and justified in Chapter 2, based on the current literature. The historical

AEW record was then revisited, applying these analysis techniques to NCEP-NCAR

II reanalysis in Chapter 3, comparing updated AEW counts with past studies and

examining potential explanations for differences. In Chapter 4, this newly-developed

historical record was used to legitimize the Geophysical Fluid Dynamic Laboratory’s

(GFDL’s) High Resolution Atmospheric Model (HiRAM) for the study of the re-

lationship between AEWs and TCs, comparing an ensemble of three climatological

simulations to the historical record.
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The model was then used to isolate the internal variability of AEW activity in

Chapter 5, both by taking advantage of the multiple historical realizations produced

by the climatological suite of simulations and by examining additional simulations

forced by interannually invariant prescribed sea surface temperature (SST), includ-

ing a control simulation with climatologically average SSTs and a perpetual La Niña

simulation with composite SSTs from strong La Niña years (see Appendix B). In

Chapter 6, the large-scale environment was drastically altered through the manipula-

tion of African albedo, and the resulting climatologies were examined to disentangle

the effects of environmental favorability and AEW activity levels on TC activity.

Finally, the results from the various simulations were analyzed comprehensively in

Chapter 7, on both interannual and climatological timescales. The key results per-

taining to the relationship between AEWs and Atlantic TCs from Chapters 3 through

7 are highlighted and synthesized here.

The AEW historical record produced with the current methodology as applied

to NCEP-NCAR II reanalysis does not exhibit statistically significant correlation

with any past studies of the interannual variability of AEW count and its potential

relationship with TC count (Avila et al., 2000; Thorncroft and Hodges, 2001; Hop-

sch et al., 2007). This is not surprising, as none of the past studies correlate with

each other. Upon further scrutiny, these past studies do not agree on total annual

AEW count, the degree of AEW variability, or the relationship between AEW and

TC counts. The methodology employed in the present study is more robust than in

past studies, in that the present techniques are designed to target and count relevant

AEWs that originate over Africa and make it to the MDR. This methodology also

links individual AEWs and TCs, strengthening the argument that there is a causal

relationship between AEW and TC count, rather than simply a similar degree of

variance in two independent fields giving the illusion of a relationship. It is heart-

ening that the reanalysis-derived historical record developed with the novel analysis
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techniques employed here shows good agreement with the seasonal cycle and spectral

statistics of AEW activity put forth in past studies and with modeled-derived AEW

activity in climatological HiRAM simulations.

The historical AEW count record derived from NCEP-NCAR II reanalysis ex-

hibits marked interannual variability and statistically significant correlation with TC

count. Although such a relationship between AEWs and TCs has been suggested by

others in the literature (e.g., Thorncroft and Hodges, 2001), this is the first rigorous

quantitative evidence of such a linkage. The correlation between AEW and TC count

is slightly weaker in the model-derived than in the reanalysis-derived historical record,

but is still significant. When minimizing the confounding influence of environmental

favorability by subtracting the effects attributed to ENSO phase and annual trend

from the counts, the AEW residuals explain a statistically significant amount of the

TC residual interannual variability, namely, 10% in the climatological simulations and

40% in the reanalysis-derived historical record.

The climatological ensemble of HiRAM simulations shows reasonable agreement

with the reanalysis-derived AEW record overall, producing average annual AEW and

TC counts that are indistinguishable from the historical record. The ensemble aver-

age model-derived AEW counts covary with the reanalysis-derived historical counts

interannually, but the individual ensemble members do not exhibit statistically sig-

nificant correlation with reanalysis-derived historical AEW variability. On the other

hand, both ensemble average and the individual ensemble member model-derived TC

counts correlate well with the reanalysis-derived historical TC counts. This implies

that AEW activity is at least partially determined by the prescribed SST, but to

a lesser extent than TC activity, so a significant portion of the AEW variability is

independent of the large-scale forcing.

Since ensemble averaging helps isolate the effects of the large-scale forcing, the

interannual variability of the model-derived historical AEW and TC counts may be
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separated into environmental fluctuations (the ensemble mean) and stochastic vari-

ability (the perturbation from the ensemble mean). These perturbation AEW and

TC counts are well-correlated interannually for the climatological ensemble members.

Although much of the TC variability is constrained by the favorability of the large-

scale conditions, this supports the idea that variability in AEW count may explain the

component of the TC variability that remains unexplained by known environmental

factors. Specifically, a linear regression model of perturbation TC count reveals that

an average of one in four additional AEWs, above and beyond the average determined

by environmental factors, contributes an additional TC.

Another way to examine the importance of AEW variability above and beyond

that determined by the large-scale favorability is by examining simulations forced

by interannually invariant SSTs. In these cases, there simply is no interannual vari-

ability in the forcing, minimizing the associated variation of the large-scale environ-

ment. Both a control and a perpetual La Niña simulation with seasonally varying

but interannually invariant forcing exhibit covariance between AEW and TC counts

on interannual scales, demonstrating that there is significant internal variability in

AEW activity in the atmosphere, and that this internal AEW variability has rele-

vance to TC variability beyond the covariance in both due to large-scale forcing as

communicated through the prescribed SSTs.

Although AEW count and TC count covary interannually to a degree beyond what

would be expected due to environmental forcing alone, the large-scale environment

can be more important than the number of AEWs in determining the climatologi-

cally average number of TCs that form annually, as evidenced by the control and the

perpetual La Niña simulations. These two simulations have statistically significantly

different climatologically average TC count, despite having statistically indistinguish-

able average AEW counts. This increase in TC activity is associated with an increase
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in the genesis potential index (GPI; Emanuel and Nolan, 2004) in the Atlantic due

to La Niña.

This interplay between large-scale favorability and AEW activity level in deter-

mining the climatologically average TC count is examined further through a suite of

four simulations with prescribed uniform albedo over Africa. Through the alteration

of the magnitude of the uniform African albedo, the environmental favorability and

AEW activity is varied significantly beyond the range naturally occurring in the cur-

rent climate on interannual scales. Both the large-scale favorability as determined

by GPI and the AEW count generally increase with increasing albedo, as the model

exhibits behavior similar to that expected in a transition from a “wet mode” to a “dry

mode” over western Africa. There is a statistically significant relationship between

both GPI and climatological TC count, as well as climatological AEW count and

TC count in the uniform albedo simulations. Statistical tests show that AEW count

demonstrates additional skill over, and is not simply responding to, the environmen-

tal changes that also affect TC count, as communicated by GPI and its components,

absolute vorticity, relative humidity, potential intensity, and vertical wind shear.

Across both the reanalysis-derived historical record and all model simulations,

there is a statistically significant correlation between AEW count and TC count.

Considering AEW and TC count totals from every model year across all simulations,

without correcting for the effects of differences in large-scale favorability, an average

of approximately 1 in 2 AEWs contribute an additional TC annually. This effect

can be partitioned into the part due to the covariation between AEW and TC count

that is forced by the environment, and the stochastic variability of AEW count itself.

Since the latter accounts for approximately 1 in 4 AEWs contributing an additional

TC annually, it seems that about half of the influence of AEW count on TC count

stems from covariation due to environmental favorability, and half due to internal

AEW variability.
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Given the results of interannual and climatological detrending, multiple linear re-

gression models, and ensemble averaging, it is unlikely that the relationship between

AEW count and TC count is simply controlled by the large-scale environmental favor-

ability. AEWs seem to play an active role in determining TC count, as the internal

atmospheric variability in AEW count explains a component of the TC variability

unexplained by known indicators of environmental favorability.

8.2 Future Work

The rich datasets developed here to determine whether AEWs influence Atlantic

TC activity contain several yet unexplored facets, such as regional impacts on TC

genesis, landfall potential, TC strength, and the percent of African TCs. With the

principal relationship between AEWs and TCs newly established, these datasets could

be applied to address a great number of secondary research questions.

It is argued above that the stochastic component of AEW count provides skill

above and beyond what can be easily deduced from the large-scale environmental

favorability, both in the reanalysis-derived historical record and in the model, war-

ranting further study of the sources of this AEW variability. Coupled with the re-

sults presented here, a better understanding of the physical mechanisms at work in

determining AEW activity level would have applications in TC predictability. Ana-

lyzing fluctuations in the modeled African Easterly Jet on various timescales, both

its strength and location, could be an interesting starting point.

In any study of AEW activity, the length of the observational record is a severely

limiting factor, necessitating the use of modeling techniques for some applications.

Unfortunately, since the correlation between AEW count and TC count is found to

be weaker in HiRAM than in the historical record produced using NCEP-NCAR II

and IBTrACS, the model may not capture the full extent of the AEW variability and
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the associated TC variability in the real world. If AEWs are resolvable, it would be

useful to corroborate and possibly extend the reanalysis-derived historical record pro-

duced here, perhaps using the Twentieth Century Reanalysis (20CR) from Compo

et al. (2011). The 20CR dataset exclusively assimilates surface-based observations

of sea level pressure and temperature (SLP and SST), eliminating the observational

biases inherent in upper-level observations and providing a longer record with fewer

assimilation discontinuities than contemporary reanalyses. Comparing with the his-

torical record produced here using NCEP-NCAR II, the trade-off in surface-only data

assimilation could be evaluated to determine whether 20CR would be a useful tool

for studying AEW variability. More generally, it would be productive to compare

multiple reanalyses, to better constrain the level of uncertainty in historical AEW

variability, establish whether there is an overall trend in AEW count, and evaluate

the fidelity of the climatological HiRAM simulations.

As well as applying the present analysis techniques to multiple reanalyses, it would

also be telling to use multiple genesis potential indices to corroborate or qualify the

conclusions drawn above. Using multiple measures of environmental favorability could

strengthen the argument that AEW count does indeed influence TC activity, exhibit-

ing skill above and beyond the state of the large-scale environmental conditions.

Systematic study of measures of genesis potential and their constituent components

could also provide insight on the potential level of contamination in these metrics,

diagnosing the extent to which AEW and TC activity itself might influence measures

of the large-scale favorability.

Finally, it would be useful to either use an extended reanalysis-derived historical

record or to produce additional simulation years to better ascertain the typical level of

AEW activity in La Niña conditions, as well as in El Niño conditions. Although there

was no statistically significant difference in AEW count in the simulation forced with

composited La Niña SSTs and the simulation forced with climatologically average
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SSTs, there may have been a difference that was simply too small to detect. This

could have implications for the results presented about the relevance of ENSO phase.
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Appendix A

Some Useful Acronyms

The following acronyms are used throughout this dissertation.

AEW African Easterly Wave
AEJ African Easterly Jet
AEJN Northern African Easterly Jet (see Figure 1.1)
AEJS Southern African Easterly Jet (see Figure 1.1)
AGCM Atmospheric General Circulation Model
AM2.1 Atmospheric Model v 2.1 from GFDL (Anderson et al., 2004)
AMIP-II Atmospheric Model Intercomparison Project
AMMA African Monsoon Multidisciplinary Analyses
AOS Atmospheric and Oceanic Sciences
AR5 The Fifth Assessment Report of the IPCC
BRDF Bidirectional Reflectance Distribution Function
DOE Department of Energy
ECMWF European Centre for Medium-Range Weather Forecasts
ENSO El Niño-Southern Oscillation
EOF Empirical Orthogonal Functions
ERA-40 European Centre for Medium-Range Weather Forecasts (ECMWF)

Reanalysis (Uppala et al., 2005)
ERA-Interim European Centre for Medium-Range Weather Forecasts (ECMWF)

Reanalysis (Dee et al., 2011)
GARP Global Atmospheric Research Program
GATE GARP Atlantic Tropical Experiment (Kuettner, 1974)
GCM General Circulation Model
GFDL NOAA’s Geophysical Fluid Dynamics Laboratory
GPI Genesis Potential Index (Emanuel and Nolan, 2004)
HadISST Hadley Centre Global Sea Ice and Sea Surface Temperature Dataset

(Rayner et al., 2003)
HEART Hard Equations and Rational Thinking
HiRAM High Resolution Atmospheric Model from GFDL
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IBTrACS International Best Track Archive for Climate Stewardship (Knapp
et al., 2010)

IPCC Intergovernmental Panel on Climate Change
ITCZ Intertropical Convergence Zone
MDR Main Development Region
MJO Madden-Julian Oscillation
MODIS MODerate Resolution Imaging Spectroradiometer
MPI Maximum Potential Intensity (Bister and Emanuel, 2002)
NAMMA National Aeronautics and Space Administration (NASA) African

Monsoon Multidisciplinary Analyses (AMMA) (Zipser et al., 2009)
NASA National Aeronautics and Space Administration
NCAR National Center for Atmospheric Research
NCEP National Centers for Environmental Prediction
NCEP-NCAR I National Centers for Environmental Prediction (NCEP)-National

Center for Atmospheric Research (NCAR) Reanalysis (Kalnay et al.,
1996)

NCEP-NCAR II National Centers for Environmental Prediction (NCEP)-Department
of Energy (DOE) Atmospheric Model Intercomparison Project
(AMIP II) Reanalysis (Kanamitsu et al., 2002)

NOAA National Oceanic and Atmospheric Administration
OLR Outgoing Longwave Radiation
ONI Oceanic Niño Index (NOAA/NWS Cold and Warm Episodes by Sea-

son, 2014)
SAL Saharan Air Layer
SST Sea Surface Temperature
TC Tropical Cyclone; all intensities of cyclones detected by the tracking

algorithm are included (see Section 2.2.2), and are referred to inter-
changeably as “tropical storms” and “TCs,” regardless of strength

TEJ Tropical Easterly Jet
WAWJ West African Westerly Jet
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Appendix B

ENSO Classification

The Oceanic Niño Index (ONI) consists of a three-month running average of SST

anomalies in the region from 5◦S to 5◦N and 120◦W to 170◦W (NOAA/NWS Cold

and Warm Episodes by Season, 2014). ONI is used to classify years by ENSO phase

throughout this dissertation and is partially reproduced here. Relevant ONI values

for June through August (JJA), July through September (JAS), August through

October (ASO), and September through November (SON) are shown below, along

with the average of these four values (JJASON Average), for the years 1967 through

2012 (although no individual simulation or historical study spans the entire period).

Years from historical simulations and past studies are classified based on the JJA-

SON Average; years in which the JJASON Average is greater than 0.5 are considered

El Niño years (e.g., 1982, 1986, 1987, 1991, 1994, 1997, 2002, 2004, 2006, 2009);

years in which the JJASON Average is less than -0.5 are considered La Niña years

(e.g., 1985, 1988, 1995, 1998, 1999, 2000, 2007, 2010, 2011). The JJASON Average

is also used for multiple regressions that include ENSO phase as a predictor (e.g.,

Sections 3.2.4 and 4.5).

The La Niña composite for the perpetual La Niña simulation (see Section 2.1.2

and Chapter 5) was produced from years after 1982 for which the ONI index for

both JAS and ASO is less than -0.5 (i.e., 1985, 1988, 1998, 1999, and 2000). This
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was finalized before this version of ONI and the associated JJASON averages were

considered, but is compatible with the definitions given here.

Year JJA JAS ASO SON JJASON Average ENSO Phase

1967 0.1 -0.1 -0.3 -0.3 -0.2
1968 0.4 0.5 0.5 0.6 0.5 El Niño
1969 0.5 0.5 0.8 0.9 0.7 El Niño
1970 -0.5 -0.7 -0.7 -0.7 -0.7 La Niña
1971 -0.7 -0.7 -0.7 -0.8 -0.7 La Niña
1972 1.1 1.4 1.6 1.9 1.5 El Niño
1973 -1.0 -1.2 -1.3 -1.6 -1.3 La Niña
1974 -0.5 -0.4 -0.4 -0.6 -0.5 La Niña
1975 -1.1 -1.2 -1.4 -1.5 -1.3 La Niña
1976 0.2 0.4 0.6 0.7 0.5 El Niño
1977 0.4 0.4 0.4 0.7 0.5 El Niño
1978 -0.3 -0.4 -0.4 -0.3 -0.4
1979 0.0 0.2 0.3 0.5 0.3
1980 0.3 0.1 -0.1 0.0 0.1
1981 -0.4 -0.4 -0.3 -0.2 -0.3
1982 0.7 1.0 1.5 1.9 1.3 El Niño
1983 0.2 -0.2 -0.5 -0.8 -0.3
1984 -0.3 -0.2 -0.3 -0.6 -0.4
1985 -0.5 -0.5 -0.5 -0.4 -0.5 La Niña
1986 0.3 0.5 0.7 0.9 0.6 El Niño
1987 1.4 1.6 1.6 1.5 1.5 El Niño
1988 -1.3 -1.2 -1.3 -1.6 -1.4 La Niña
1989 -0.3 -0.3 -0.3 -0.3 -0.3
1990 0.3 0.3 0.4 0.3 0.3
1991 0.8 0.7 0.7 0.8 0.8 El Niño
1992 0.3 0.0 -0.2 -0.3 -0.1
1993 0.3 0.2 0.2 0.2 0.2
1994 0.4 0.4 0.5 0.7 0.5 El Niño
1995 -0.2 -0.4 -0.7 -0.8 -0.5 La Niña
1996 -0.2 -0.3 -0.3 -0.3 -0.3
1997 1.5 1.8 2.1 2.3 1.9 El Niño
1998 -0.7 -1.0 -1.2 -1.3 -1.1 La Niña
1999 -1.0 -1.1 -1.1 -1.3 -1.1 La Niña
2000 -0.6 -0.5 -0.6 -0.6 -0.6 La Niña
2001 0.0 0.0 -0.1 -0.2 -0.1
2002 0.8 0.8 0.9 1.2 0.9 El Niño
2003 0.2 0.4 0.4 0.4 0.4
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Year JJA JAS ASO SON JJASON Average ENSO Phase

2004 0.5 0.7 0.8 0.7 0.7 El Niño
2005 0.2 0.1 0.0 -0.2 0.0
2006 0.2 0.3 0.5 0.8 0.5 El Niño
2007 -0.4 -0.6 -0.8 -1.1 -0.7 La Niña
2008 -0.3 -0.2 -0.1 -0.2 -0.2
2009 0.5 0.6 0.8 1.1 0.8 El Niño
2010 -0.9 -1.2 -1.4 -1.5 -1.3 La Niña
2011 -0.2 -0.4 -0.6 -0.8 -0.5 La Niña
2012 0.1 0.4 0.5 0.6 0.4
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