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Abstract

A high-resolution global atmospheric model is used to disentangle the relationship
between African easterly waves (AEWSs) and Atlantic tropical storms (TCs) from
the large-scale environmental factors that may obscure their connection. Since the
two most cited references on AEW interannual variability in relation to TC activity
draw conflicting conclusions about the historical relationship, and the AEW counts in
each study do not show agreement on historical variability, novel analysis procedures
are developed to produce consistent AEW and TC count statistics for the historical
record using reanalysis products. This reanalysis-derived historical record is used
to legitimize the model for the study of AEWSs, which is subsequently utilized to
investigate the relationship between AEWs and TCs.

The internal variability of the relationship between AEW and TC count, includ-
ing the sensitivity to ENSO phase and annual trends, and the interplay between
environmental factors, AEW activity, and TC activity are probed using three sets
of simulations: 1) climatological simulations, consisting of three ensemble members
forced with historical seasonally and annually varying SST; 2) simulations with in-
terannually invariant forcing, including a control simulation with climatological mean
SST and a perpetual La Nina simulation with composite SST from strong La Nina
years; 3) perturbed simulations, in which the large-scale environment is drastically
altered through the manipulation of African albedo.

Since variability exists in AEW count that is unexplained by known indicators of
large-scale environmental favorability, across all simulations and multiple timescales,
it is unlikely that the ubiquitous covariance between AEW and TC count is simply a
response to environmental factors. The statistically significant correlations between
AEW and TC statistics suggest that AEW variability accounts for a portion of the
observed variability in TC count not due to known environmental factors, since there

is unexplained variance in AEW count, and both individual years and aggregated

il



model runs with more (fewer) AEWSs also tend to have more (fewer) TCs. It is
argued that while half of the covariance between AEW and TC count interannually is
mediated by the large-scale environment, the other half can be attributed to stochastic

AEW variability.
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Chapter 1

Introduction

1.1 Motivation

Most hurricane damage in the United States is owed to the rare and often diffi-
cult to predict events in which high intensity tropical cyclones (TCs) make landfall
(Landsea, 1993; Emanuel, 2011). While much of the year-to-year variance in total
hurricane activity can be anticipated given adequate information about the large-scale
environment (Emanuel et al., 2008; Knutson et al., 2007), storm intensity, duration,
frequency, and thus destructive potential varies with genesis location (Kossin et al.,
2010). Kossin et al. (2010) found that storms that form in the region sensitive to
African Easterly Wave (AEW) fluctuations tend to be very intense, long-lived, and
destructive, so there is cause to believe that AEW-spawned tropical storms are of
special import to the United States.

Avila et al. (2000) separated “African years” from “non-African years” based on
the percentage of storms that originated from AEWSs for the 30-year period from
1967-1997 and found that the destructive potential of storms is larger for African
than non-African years. Furthermore, Landsea (1993) found that over 80% of intense
hurricanes originate from AEWSs, compared to 60% of tropical storms and moderate
hurricanes. Unfortunately, AEW variability is poorly understood and the extent to

which AEW variability impacts hurricane activity is debated in the literature, as some
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authors have suggested a correlation exists between AEW activity and Atlantic TC
activity (Thorncroft and Hodges, 2001; Frank and Roundy, 2006; Hopsch et al., 2007;
Belanger et al., 2010), while others found little to no independent correlation (Avila
et al., 2000; Goldenberg et al., 2001; Caron and Jones, 2011).

This dissertation does not attempt to predict AEW variability or to understand
the mechanisms of tropical cyclogenesis, but instead focuses on constraining the
extent to which the nature of Atlantic TC activity is dependent on the variability
of AEWs. Others have tried to address this issue, but previous attempts have been
restricted to historical analyses, reanalyses, or limited regional modeling studies,
and have been unable to cleanly disentangle the relationship between AEWs and
TCs from the large-scale environmental factors that often obscure the role of AEWs
(see Section 1.2.2). With the recent developments in high resolution atmospheric
models producing reliable TC simulations (see Sections 1.2.3), it is now possible
to 1) establish previously unavailable information on the internal atmospheric vari-
ability of the AEW-TC relationship by comparing multiple model realizations with
observed sea surface temperature (SST) used as the lower boundary condition, 2)
remove annual SST variations to explore the sensitivity of AEW and TC activity
to altered seasonally-varying SST, and 3) perturb the large-scale environment be-
yond the realm of the present day climate to examine the relationship between the
environment, AEW activity, and TC activity. In order to understand whether TCs
and AEWSs simply respond to the same large-scale environmental factors or AEWs
take a more active role in TC variability, this work endeavors to isolate and exam-

ine the importance of AEW activity using a TC-permitting global atmospheric model.



1.2 Past Work

This section reviews relevant past literature, beginning with what is known about
AEWSs themselves, including their observed characteristics as well as the current
understanding of their dynamics (Section 1.2.1). Next, past works exploring the
potential connections (or lack of connection) between Africa, AEWs, and TCs are
considered (Section 1.2.2). This is followed by an overview of TC-permitting mod-
els (Section 1.2.3), beginning with a discussion of the strengths and limitations of
high-resolution atmosphere-only models in general, and then highlighting successful
past studies of TCs using the National Oceanic and Atmospheric Administration’s
(NOAA) Geophysical Fluid Dynamics Laboratory’s (GFDL) High Resolution Atmo-
spheric Model (HiRAM).

1.2.1 Properties and Variability of AEWs

African Easterly Wave Characteristics

The characteristics of AEWs have been examined with a variety of methods, including
composite techniques (Carlson, 1969b; Reed and Recker, 1971; Burpee, 1974; Reed
et al., 1977; Norquist et al., 1977; Thompson et al., 1979; Duvel, 1990; Diedhiou
et al., 1999; Kiladis et al., 2006; Aiyyer and Thorncroft, 2006; Hopsch et al., 2010;
Peng et al., 2011; Agudelo et al., 2011), spectral techniques (Burpee, 1972, 1974;
Albignat and Reed, 1980; Nitta and Takayabu, 1985; Reed et al., 1988b; Lau and
Lau, 1990; Duvel, 1990; Thorncroft and Rowell, 1998; Pytharoulis and Thorncroft,
1999; Mekonnen et al., 2006; Frank and Roundy, 2006), and synoptic case studies
(Carlson, 1969a; Frank, 1970; Reed et al., 1988a; Avila and Clark, 1989; Avila and
Pasch, 1992; Pytharoulis and Thorncroft, 1999; Avila et al., 2000; Karyampudi and
Pierce, 2002; Berry and Thorncroft, 2005; Ross and Krishnamurti, 2007; Zawislak and

Zipser, 2010; Bain et al., 2011), using datasets from observations, field campaigns,
3



operational analyses, reanalysis products, and modeling techniques. A cursory review
of selected past studies is provided in this section.

AEWSs form over tropical Africa and then propagate westward into the open At-
lantic. The first systematic study of AEWSs utilized synoptic analysis of early satel-
lite images and rawinsonde data (Carlson, 1969a,b), finding a wavelength of 1300
mi (about 2000 km), a period of 3.2 days, and a westward speed that varied from
12 to 20 kt (about 6 to 11 m s™'), but the source region of the disturbances was
not determined. Burpee (1972, 1974) went on to identify a mid-tropospheric easterly
jet as an important player in the origin of the disturbances, using both statistical
and compositing methods to uncover a horizontal wavelength of 3100-3800 km and a
period of 3-5 days.

The extensive observational program GATE (GARP Atlantic Tropical Experi-
ment) was launched in the mid-1970s, providing temporally and spatially rich data
from the AEW region of interest for the first time and corroborating previous esti-
mates of wavelength and phase speed. GATE began in June of 1974, included three
observing periods of three weeks each, and covered a large experimental area from
10°S to 20°N and 100°W to 60°E by coordinating both ship and land observing net-
works (Kuettner, 1974). Several authors presented summaries of observations from
GATE (Reed et al., 1977; Norquist et al., 1977; Thompson et al., 1979; Greenfield
and Fein, 1979; Albignat and Reed, 1980), with a general consensus that AEWs have
a wavelength between 2000 and 4000 km, an easterly phase speed of about 8 m s™1,
and are typically found around 15°N. Using the GATE dataset and a compositing
method, Reed et al. (1977) found that the wavelength and period of AEWs is longer
over land (2700km and 3.7 days) than over the ocean (2200km and 3.2 days), but the
wave speed is about the same in both regions.

GATE remains a landmark field campaign and has shaped the modern under-

standing of the general structure of AEWs, but questions on the difference between



developing and non-developing AEWs remained. The aim of the JET2000 project
(Thorncroft et al., 2003) was to address unanswered questions on AEW evolution
and propagation. Unfortunately, JET2000 lasted less than a week (in comparison
with 100 days of GATE), and although it was launched during the climatologically
active period during late August, conditions were markedly drier and AEWSs were
weaker and less coherent than had been hoped. The next major campaign took
place in 2006, the downstream extension of the international African Monsoon Mul-
tidisciplinary Analyses (AMMA) experiment, the National Aeronautics and Space
Administration (NASA) AMMA (NAMMA) (Zipser et al., 2009). NAMMA endeav-
ored to address the questions of which AEWs become TCs and what role the Saharan
Air Layer (SAL) plays, collecting extensive data on seven AEWSs, two that developed
into TCs, three that bore some connection to future TCs but not as cleanly, and two
that never developed beyond the wave stage.

Beyond satellite observations and field campaigns, studies examining operational
analysis (Nitta and Takayabu, 1985; Reed et al., 1988a,b; Duvel, 1990; Lau and Lau,
1990; Pytharoulis and Thorncroft, 1999; Thorncroft and Hodges, 2001; Karyampudi
and Pierce, 2002; Fink and Reiner, 2003; Berry and Thorncroft, 2005; Ross and Kr-
ishnamurti, 2007; Peng et al., 2011) and reanalysis products (Diedhiou et al., 1999;
Fink et al., 2004; Matthews, 2004; Chen, 2006; Kiladis et al., 2006; Mekonnen et al.,
2006; Hopsch et al., 2007; Fink et al., 2010; Hopsch et al., 2010; Leroux et al., 2010;
Agudelo et al., 2011; Ventrice et al., 2011) also provide insight into AEW structure
and dynamics. While resolution is not generally sufficient to shed further light on
the wave characteristics discussed above, select reanalysis and operational analysis
studies are discussed further in the following section in the context of wave dynamics,
where they are more apt to aid our understanding.

Finally, many idealized modeling studies have examined the structure and lifecycle

of AEWs. Hall et al. (2006) provided a useful summary table of AEW characteristics



from previous idealized studies (Rennick, 1976; Simmons, 1977; Mass, 1979; Kwon,
1989; Chang, 1993; Thorncroft and Hoskins, 1994a,b; Thorncroft, 1995; Paradis et al.,
1995; Grist et al., 2002), in which maximum wind speeds range from 10 to 23 m s},
growth rates range from 0.25 to 0.88 day~!, periods range from 2.2 to 5.3 days,
wavelengths range from 2000 to 3900 km, and phase speeds ranged from 7.5 to 15.8
m s~ L.

There is some debate in the literature about interannual variability in AEW fre-
quency. Avila et al. (2000) compiled thirty-one years of operational data (1967-1997),
and while they noted variation from year to year in AEW count, they argued that the
variation is “probably not significant” and might be due to changes in observational
methods. In an earlier work Avila and Clark (1989) went as far as to claim there has
been an “almost constant number of African waves per year,” while on the other hand
several studies claim that there has been “marked interannual variability” in African
Easterly Wave activity (Thorncroft and Rowell, 1998; Thorncroft and Hodges, 2001;
Hopsch et al., 2007). The interannual variability of AEW frequency is discussed fur-
ther in the context of its potential impact on the frequency on TCs in Section 1.2.2

and the datasets published by Avila et al. (2000) and Thorncroft and Hodges (2001)

are revisited in Section 3.1.

The African Easterly Jet and Wave Dynamics

Using early upper air data, Burpee (1972) was the first to show that AEWs are
associated with a midtropospheric easterly jet in the baroclinic zone of the Sahel
(apparent in Figure 1.1 at 600mb around 15°N), and he further showed that this
jet satisfies the Charney and Stern (1962) instability criterion. Burpee (1972) also
found that perturbations (AEWSs) forming along this jet undergo mixed baroclinic-
barotropic wave growth (with horizontal and vertical zonal shear acting as equal

sources of energy) and are unlike typical tropical disturbances, which he attributed
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Figure 1.1: Reproduced from Burpee (1972), meridional cross-section at 5°E of zonal
wind averaged for August. The 600mb easterly jet at about 15°N with a peak strength
of 12-15 m/s is referred to as the African Easterly Jet by both Thorncroft and Hoskins
(1994a) and Burpee (1972), and will be referred to as AEJy throughout this paper.
The 200mb jet closer to 10°N is identified as a remnant of the Indian monsoon jet by
Burpee (1972), is referred to as the Tropical Easterly Jet by Thorncroft and Hoskins
(1994a), and will be referred to as AEJg throughout this paper.

to the fact that the monthly mean surface temperature of North Africa changes by
10°C in only 10° of latitude. The jet from whence AEWs come is often referred to
as the African Easterly Jet (AEJ), although this can be a bit misleading, as modern
analysis has revealed two distinct latitudes of AEW formation (Nitta and Takayabu,
1985; Reed et al., 1988a; Lau and Lau, 1990; Ross, 1991; Thorncroft and Hoskins,
1994a; Thorncroft and Hodges, 2001; Fink and Reiner, 2003; Fink et al., 2004; Chen,
2006; Hopsch et al., 2007; Ross and Krishnamurti, 2007; Chen et al., 2008).

Burpee (1974) noted that in a general sense, the vertical structure of the waves
varies such that the meridional wind tilts in the opposite direction to the mean zonal
shear, consistent with positive baroclinic energy conversion. This point was later
nuanced by Reed et al. (1977) and Albignat and Reed (1980), who found similar
structure at 15°N, but found less vertical tilt equatorward. Thorncroft (1995) suggests
that this may be due to weaker baroclinicity and stronger latent heating effects at

lower latitudes.



Revisiting the plot of the meridional cross-section of zonal wind at 5°E from
a typical August from Burpee (1972), Thorncroft and Hoskins (1994a) make the
distinction between what they referred to as the “African Easterly Jet” or AEJ and
the “Tropical Easterly Jet” or TEJ (see Figure 1.1). The northern track, which
Thorncroft and Hoskins (1994a) labeled the AEJ and will henceforth be called AEJy,
consists of the types of eddies with the characteristic ascent of warm and dry air
over surface troughs as are commonly found in arid zones (Lau and Lau, 1990).
On the other hand, the southern storm track, which coincides with the latitude of
the TEJ from Thorncroft and Hoskins (1994a) and will henceforth be called AEJs,
is associated with moist convective systems and coincides with the climatologically
rainy zone (Lau and Lau, 1990). Disturbances from these two regions are known
to interact and sometimes merge in the Atlantic (Reed et al., 1977; Thorncroft and
Hoskins, 1994a; Ross and Krishnamurti, 2007).

AEWSs often have complicated structures, sometimes being multicentered, with
one low-level circulation center to the north and another mid-tropospheric center
to the south (Reed et al., 1977; Pytharoulis and Thorncroft, 1999). Using a manual
method to identify and track AEWs for 1998 and 1999 in ECMWF analysis, Fink and
Reiner (2003) found that only 12 of 81 “AEWSs” over Africa were not accompanied
by a second vorticity center. Fink et al. (2004) coined the term “simultaneous twin
vortices” to describe these pairs, and revisited the GATE period through ERA-40 to
focus on the dynamics of waves propagating along AEJy. They found that AEWs on
the northern track are almost always accompanied by an AEW on the southern track
for at least part of their lifetime, and that during the GATE period only 2 out of 18
pairs of AEWs merged.

In contrast, Chen (2006) found a population ratio of 2.5 northern to 1 southern
AEW in an analysis of ECMWF reanalysis from 1991-2000, but the tracking method-

ology, although still manual, differed from that of Fink and Reiner (2003). Looking



closely at the two years the studies have in common (1998 and 1999), the reported
counts cannot easily be reconciled. Fink et al. (2004) found 36 (32) northern (south-
ern) AEWs in May-October 1998 and 41 (41) northern (southern) AEWSs in 1999,
and through analysis of synoptic maps the authors argued that the northern and
southern waves are usually coherent features. Chen (2006) found 38 (8) northern
(southern) AEWSs in June-September 1998 and 31 (16) northern (southern) AEWs in
1999, concluding that the two types of waves seem to be independent of each other.
How one defines an AEW and how the line is drawn between waves associated with
the northern or southern storm track has a strong effect on the conclusions drawn.

While there is agreement in the literature that the AEJy and AEJg are distinct
(although not necessarily independent) over land, whether they “merge” over the
ocean is debated and in some ways is a semantic argument. Some authors concluded
that the jets themselves essentially merge over the open ocean (Reed et al., 1988b;
Duvel, 1990), but Nitta and Takayabu (1985) found that although the waves following
the two tracks seemed to be coupled and individual disturbances do at times merge,
there was no merger of the two tracks, and waves from AEJg propagated farther into
the Atlantic. Ross and Krishnamurti (2007) found that mergers of vorticity centers
occur but are not common, and more often the tracks of AEWs tend to converge to
a similar latitude without the individual vorticity centers actually merging.

There are also notable differences between AEW growth and development over
land and over the ocean. From composite analysis from the GATE dataset (Reed
et al., 1977), Norquist et al. (1977) first suggested that diabatic effects may play
an important role in strengthening AEWSs over land in west Africa, but not over
the open ocean. Thompson et al. (1979) asserted that over the ocean, AEWs grow
through barotropic energy conversion and are actually weakened by baroclinic energy
conversion and latent heat release. However, as Albignat and Reed (1980) found,

AEWSs grow primarily over land, with the principal growth region being well inland



(0-10°E) and a secondary growth region present near the coast, so by the time waves
reach the western coast of Africa, nonlinear effects have likely tapered.

In idealized studies of the linear instability of the AEJ, Thorncroft and Hoskins
(1994a) and later Paradis et al. (1995) found that without diabatic effects, AEWs are
dominated by barotropic energy conversions, so they concluded that latent heating
increases the baroclinic relative to barotropic energy conversion in AEW formation
and growth, and thus diabatic effects are important in determining synoptic structure
of AEWs. In a follow-up nonlinear lifecycle study, Thorncroft and Hoskins (1994b)
confirmed that AEWs are initially fueled by barotropic energy conversion and later
grow through baroclinic energy conversion.

Latent heating may not only be important in influencing the growth and synoptic
structure of AEWs—there is some suggestion that localized latent heating in the
entrance region of the AEJ may serve to initiate disturbances downstream (Berry
and Thorncroft, 2005; Mekonnen et al., 2006; Thorncroft et al., 2008). Along with
latent heating, Leroux et al. (2011) suggest that there may also be remote dynamical
precursors. Hall et al. (2006) first put forward the notion that AEW-formation may
require a finite amplitude trigger, because they found that even a low level of surface
damping has a stabilizing effect in idealized simulations, and thus the AEJ may be
stable or only weakly unstable. The findings of Hsieh and Cook (2008) support the
idea that jet instability is not sufficient to induce significant convection, so it is likely
that the jet sustains waves in their decaying stage but is unable to initiate waves
without some kind of convective precursor. This so-called “trigger hypothesis” has
been studied as an alternative to the classical explanation that AEWSs result from the
AEJ itself being unstable, but Leroux and Hall (2009) found that even if one assumes
a finite amplitude precursor is required, AEW formation is still extremely sensitive

to intraseasonal variations in the AEJ itself.
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While AEWs weaken the AEJ by fluxing easterly momentum away from the jet
(Thorncroft and Hoskins, 1994a), diabatically forced meridional circulations, namely
dry convection in the Sahara and moist convection in the intertropical convergence
zone (ITCZ), are thought to maintain it (Karyampudi and Carlson, 1988; Thorncroft
and Blackburn, 1999). Cook (1999) posits that the AEJ forms over West Africa as
a result of strong meridional soil gradients, because in a series of general circulation
model (GCM) experiments, positive temperature gradients associated with solar ir-
radiation, SSTs, or clouds were not large enough to produce an easterly jet without
realistic soil moisture gradients. Although it is clear that the AEJ and AEWs are
dynamically linked, Hsieh and Cook (2005) found that AEW generation may be more
dependent on the strength of the ITCZ than the strength of the AEJ. The relationship
between the AEJ and AEWs is rather complicated, and this is taken a step further

in the next section in considering how TCs fit into the picture.

1.2.2 Connections between Africa, AEWs, and TCs

By the late 1960s it was already clear that many hurricanes and tropical storms
develop from African disturbances (Carlson, 1969a). Unfortunately, the question of
whether the count of AEWSs varies substantially interannually is somewhat unsettled
(see Section 1.2.1), let alone the question of whether any AEW variability might af-
fect TC variability on seasonal or interannual scales. Some authors maintain that
there is no independent connection between AEW variability and TC variability, oth-
ers suggest an indirect connection (e.g., subject to large-scale environmental factors
or mediated by African rainfall variability), and still other authors claim a direct
connection between AEW and TC variability.

Rather than looking at aggregate interannual variability, some studies emphasize
the importance of the structure or intensity of individual AEWs (Kwon and Mak,
1990; Zipser et al., 2009; Zawislak and Zipser, 2010; Hopsch et al., 2010; Agudelo
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et al., 2011; Peng et al., 2011), but this dissertation is not framed in terms of isolating
differences between developing versus non-developing AEWs and so these issues are
not addressed in detail here. The idea that AEW intensity might be more important
than frequency is consistent with the “finite-amplitude precursor idea” of Emanuel
(1989), but while an individual AEW’s structure or intensity may impact its ability
to develop into a TC, the focus of this dissertation is on addressing the influence
AEWs have on TC activity in an aggregate sense.

There is also some debate as to which or whether both AEW storm tracks (AEJy
and AEJgs) have a strong connection to Atlantic TC formation, but part of the discrep-
ancy comes from accounting differences in discerning between northern and southern
waves and whether one counts the percentage of TCs that formed from AEWSs or
the percentage of AEWs that become TCs. Thorncroft and Hodges (2001) found
that AEWs from the southern storm track tend to make the largest contribution
to hurricane formation. On the other hand, Chen et al. (2008) found that in their
analysis of 1979-2006 reanalysis products, northern AEWSs seed 32% of Atlantic TCs,
while southern AEWSs seed 26%, but given the 2.5:1 population ratio of northern to
southern AEWs found in that dataset (Chen, 2006), the conversion rate of southern
AEWs to tropical cyclones is twice as effective as that of their northern counterparts.
Finally, Fink et al. (2004) found that most AEWs come in pairs, which would make
the above distinction moot to some extent. Regardless, Kossin et al. (2010) explained
that disturbances traveling along the northern storm track are less effective at initi-
ating cyclogenesis, because they need to make it farther west before intensifying and
are thus more likely to encounter hostile environments before developing. In support
of the idea that fewer northern AEWs have the chance to initialize cyclogenesis, Hop-
sch et al. (2007) noted that about 75% of the southern AEWSs continue to the main

development region (MDR), but only about 20% of northerly AEWs make it.
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Setting the details of structure, intensity, and type (northern or southern) aside,
oft-cited opposition to the potential connection between AEW and TC variability was
put forth by Avila (Avila and Clark, 1989; Avila and Pasch, 1992; Avila et al., 2000).
Avila’s historical tabulations of manually tracked tropical systems have shown that
“African years” (years in which at least 70% of TCs originated from AEWSs) have a
higher destructive potential than “non-African years” (in which no more than 50%
of TCs originated from AEWSs). Despite a standard deviation of 12% of the average
value in May-November AEW count for 1967-1997 (see Section 3.1.1), the authors
maintain that the AEW count remains functionally constant from year-to-year. Based
on this supposition, Avila et al. (2000) argue that the large-scale environment must
play the most important role for storm development, since the number of AEWSs
remains fairly constant from year-to-year and non-African years are anecdotally found
to correspond with strong El Nino episodes, which provide a hostile environment and
do not permit AEWSs to grow. That is, the number of storms developing from AEWs
varies drastically, but since the authors believe that the number of AEWs does not,
the number of AEWs must be unrelated to the number of TCs that ultimately form.
The data on which this argument is based is revisited in Section 3.1.1.

Caron and Jones (2011) also concluded that large-scale environmental factors are
more important than AEWs in determining how many TCs originate from African
disturbances, but not because AEW activity levels are constant. Caron et al. (2010)
and Caron and Jones (2011) extended a Canadian regional model to the tropics, and
in tuning various model parameters (e.g., resolution, downscaling technique, lateral
boundary conditions, regional domain size) they noted variations in both AEW and
TC activity in the Atlantic. While Caron et al. (2010) found that it is essential to
capture the frequency and intensity of AEWs in order to simulate TC activity in
the MDR, in a follow-up study Caron and Jones (2011) concluded that the potential

correlation between AEW and TC activity could not be disentangled from changes in
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genesis potential index (GPI) in the MDR. They instead ascribed coincidental varia-
tion in AEW activity and TC activity to differences in the large-scale environment,
specifically high mid-tropospheric humidity creating an environment more favorable
for moist convection. Furthermore, in simulations with reduced AEW activity, Caron
and Jones (2011) did not see a reduction in the total number of TCs so much as a
shift in the dominant region of cyclogenesis, namely from the MDR to the subtropics.

Aside from SST influences in general, some authors have suggested that the SAL
and the Madden-Julian Oscillation (MJO) also supersede the importance of AEW
variability. Dunion and Velden (2004) found that the SAL has a stabilizing effect due
to enhanced vertical wind shear and warm dry air, which may inhibit the growth of
the many TC “seedlings” (i.e., AEWSs). Ventrice et al. (2011) found that the MJO
seems to modulate AEW activity as well as TC frequency. However, they posit that
the MJO might modulate tropical cyclone activity by first modulating variability
in AEWs as well as large-scale environmental impacts, concluding that the MJO
influences AEW activity directly by enhancing or suppressing convection locally over
Africa as well as altering characteristics of the AEJ.

There is some suggestion in the literature of another indirect indicator of an AEW-
TC relationship, evident in African rainfall statistics. Thorncroft and Rowell (1998)
noticed marked interannual variability in AEW activity that is positively correlated
with seasonal mean rainfall in the Guinea Coastal region in a GCM with realistic
interannual seasonal rainfall variability. Through dry linear instability calculations,
Grist et al. (2002) confirmed that the basic state of composite winds from wet years
compared with dry years results in a shift in the preferred strength and period of
AEWSs. In the 1990s several authors noted a strong correlation between African rain-
fall and TC activity (Landsea and Gray, 1992; Goldenberg and Shapiro, 1996), so
taken together with the notion that AEWs and African rainfall are related, this could

be interpreted as evidence of a link between AEWs and TCs. On the other hand,
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Thorncroft and Hodges (2001) did not find a simple relationship between AEW vari-
ability and West Sahel rainfall variability, and starting in the mid-1990s, it seems that
the correlation between African rainfall and TCs also began to deteriorate (Aiyyer
and Thorncroft, 2006; Fink et al., 2010).

Aiyyer and Thorncroft (2006) examined the relationships of the El Nino-Southern
Oscillation (ENSO) index and Sahel precipitation with Atlantic shear, finding the
ENSO-shear correlation to have strengthened since the mid-1990s but the Sahel-shear
correlation to have weakened. Empirical orthogonal function (EOF) analysis of the
Atlantic shear shows interannual variability (the first EOF) to be highly correlated
with ENSO, while multidecadal evolution (the second EOF) is correlated with Sahel
precipitation. Both EOF's explain about 16% of the variability of TC activity in the
MDR. Fink et al. (2010) found that the correlation between West African precipi-
tation and overall TC activity in the Atlantic is weaker in years when the MDR is
more conducive to development. They speculated that SST variability can supersede
the impacts of African rainfall, but when conditions in the MDR are marginal, the
amplitude of AEWs and degree of organization becomes critical.

Thorncroft and Hodges (2001) claimed that there is a direct correlation post-
1985 between AEW activity and Atlantic TC activity, but this is based on a “visual
inspection” of somewhat limited data. They suggested that TC activity may be in-
fluenced by the number of AEWs with significant low-level amplitudes that leave
the West African coast, not simply by the total number of AEWSs, so they counted
positive relative vorticity centers leaving the coast of Africa in May through October
in ECMWF analyses. Hopsch et al. (2007) extended this work from 20 (1979-1998)
to 45 (1958-2002) years using ECMWF reanalysis and found that the positive corre-
lation Thorncroft and Hodges (2001) had found is not significant on an interannual

timescale.
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Like Thorncroft and Hodges (2001), Hopsch et al. (2007) kept track of AEW
storm tracks (diagnosing and tracking coherent structures in the vorticity field), but
also considered synoptic AEW activity (diagnosed with 2-6 day filtered meridional
wind variance at 850 hPa). While the storm track measure does not correlate with
TC activity on a year-to-year basis, there is correlation in low-frequency variability.
The authors did find strong correlation between TC interannual variability and the
synoptic measure. These studies are revisited briefly in Sections 3.1.2 and 3.1.3.

There is further support for a direct relationship between AEW and Atlantic
TC interannual variability from both observational evidence and modeled variability.
Using composite spectral analysis of outgoing longwave radiation (OLR) in a global
study of tropical waves of various temporal and physical scales (Rossby-gravity waves,
tropical depressions-type or easterly waves, equatorial Rossby waves, Kelvin waves,
and the MJO), Frank and Roundy (2006) found that cyclogenesis coincides with
above average AEW activity. Belanger et al. (2010) developed a monthly forecast
system and found that part of the model skill comes from correctly capturing the
frequency of AEWs-25% of the variance in TC activity predicted is associated with
the intraseasonal variability of the frequency of AEWs.

The results of these past works highlight the strong sensitivity to the diagnostic
method for determining AEW activity. Additionally, historical analyses only provide
fairly short climatologies and do not provide a very clean sense of the “spread” or
natural variability. While the relationship between African precipitation, AEWs, and
TCs is anything but simple, the goal of this dissertation is to determine the extent
to which AEW activity itself affects TC activity, beyond changes in the large-scale

environment, in a TC-resolving model.
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1.2.3 TC-Permitting Models

Various types of “TC-permitting models,” including regional scale (Knutson et al.,
1998, 2008; Emanuel et al., 2008; Garner et al., 2009; Caron et al., 2010; Caron
and Jones, 2011) as well as global scale models (Vitart et al., 1997; Vitart, 2006;
Oouchi et al., 2006; Bengtsson et al., 2007a,b; LaRow et al., 2008; Gualdi et al.,
2008; Sugi et al., 2009; Satoh et al., 2011; Held and Zhao, 2011; Murakami et al.,
2012; Manganello et al., 2012), have gained popularity in recent years, owing to their
utility in TC-related research areas from seasonal forecasting to global climate change.
Some studies have included coupling with an ocean (Vitart, 2006; Gualdi et al., 2008),
but due to computational costs most are atmosphere-only. Since this dissertation
itself employs a high-resolution atmosphere-only model, this section begins with a
discussion of the known strengths and limitations of such models in general, followed

by a summary of past studies of TCs using GFDL’s HIRAM in particular.

Fidelity of High-Resolution Atmosphere-Only Models

High-resolution atmosphere-only models (AGCMs) are an unmatched tool, allowing
for the manipulation and disentanglement of complicated factors that can obscure
understanding of TC variability. The ability to produce multiple model realizations
also provides a sense of the natural variability of the climate system that cannot be
extracted from the single realization that is the historical record. However, there are
some limitations that have been explored in past studies that must be acknowledged.

The main concern in high-resolution atmosphere-only models is the lack of
atmosphere-ocean feedback. Bender et al. (1993) explored the effects of ocean feed-
backs on an idealized TC vortex embedded in both easterly and westerly basic flows.
They found that the decrease in SST that is induced by a TC itself has a significant
impact on the ultimate storm intensity by reducing the total heat flux into the storm,

and there is more SST cooling the slower an idealized storm moves. They also found
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that ocean interaction has more limited effects on the track of the storm, but does
turn the storm more north and east in cases with weak easterly or no background
east/west flow. Schade and Emanuel (1999) corroborated that a lack of oceanic
feedback may lead to stronger storms by comparing a fully coupled axisymmetric
hurricane model to an uncoupled model with constant and horizontally uniform
SSTs, finding that SST feedback can cut the intensity of an idealized hurricane in
half compared with a storm modeled over a constant SST.

A lack of SST-feedback may have other indirect effects that influence TCs. Waliser
et al. (1999) found that when comparing simulations with a coupled slab ocean mixed
layer in the tropics to simulations forced with specified SSTs, even though the cou-
pled model produces very small SST perturbations (0.10-0.15°C), the decoupling dulls
the intraseasonal variability of the MJO. Similarly, Douville (2005) found that the
transient response of the Indian summer monsoon in fully coupled models is not ac-
curately captured in atmosphere-only models with prescribed SSTs, and he cautioned
that the lack of SST feedback can adversely affect both intraseasonal and interannual
timescales in atmosphere-only simulations in the context of climate change time-slice
experiments. That said, Douville (2005) also noted that AGCMs can be a useful tool
for determining the extent to which SSTs contribute to atmospheric variability.

Although the lack of SST coupling may produce stronger storms (Bender et al.,
1993; Schade and Emanuel, 1999), modeled storms are known to have lower inten-
sities and wider expanse than observed storms due to the constraints of resolution
(Bengtsson et al., 2007a,b). Walsh et al. (2007) stressed the importance of resolution-
dependent criteria for TC detection if one wishes to compare simulated cyclogenesis
with climatological cyclogenesis. This is important to bear in mind when setting
thresholds to distinguish between tropical storm intensities and is taken into consid-

eration in Section 2.2.2.
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Resolution dependence plays out in another way: the parametrization of sub grid-
scale processes can influence modeled TC intensity and genesis frequency. In HIRAM
simulations, Zhao et al. (2012) found that TC frequency and intensity are sensitive
to two model parameters in particular, the horizontal cumulus mixing rate and the
strength of damping of horizontal divergence. Increasing the former, there is a sharp
increase and then decrease in global storm frequency, and a monotonic increase in
storm intensity. Increasing the latter, there is a monotonic increase in frequency with
no change in intensity. While these parameters can play a strong role in total TC
count, one hopes that holding these parameters fixed across simulations, interannual
variability and perturbations from a control case will be meaningful.

While simulations of TC intensity leave something to be desired across the board
and sub-grid-scale processes can tip the balance, there is hope that models with
unrealistic distributions of TC intensity can still produce reliable results in terms of
TC frequency (Zhao et al., 2009). As Zhao et al. (2009) suggest, the best way to judge
the value of uncoupled models in TC research is by examining the quality of their
simulated interannual variability. The following section does just that by reviewing

past studies of model TCs produced by HIRAM simulations.

GFDL’s HiRAM

The technical details of the version of HIRAM used in this dissertation can be found
in Section 2.1.2. This section focuses on the results of past TC studies using HiIRAM.

Zhao et al. (2009) compared tracks, total counts per basin, and seasonal cycles
of hurricane strength storms from an ensemble of four 1981-2005 control simulations
of HIRAM forced with Hadley Centre Global Sea Ice and Sea Surface Temperature
(HadISST) dataset (Rayner et al., 2003), with observations from the International
Best Track Archive for Climate Stewardship (IBTrACS) (Knapp et al., 2010). There

are some regional discrepancies with observations, but the modeled count, seasonal
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Figure 1.2: Reproduced from Zhao et al. (2009), a comparison of observed (top) and
model-simulated (bottom) TC tracks from 1981 to 2005 using GFDL’s HIRAM forced
with HadISSTs (Rayner et al., 2003).

cycle, and interannual variability in the North Atlantic matches the observed counts
well. Figure 1.2 shows a comparison of observed tracks from 1981-2005 and model-
simulated TC tracks from one of the ensemble members for that same period.

As expected in a model of this resolution (approximately 50 km), the distribu-
tion of storm intensity is not a good match with observations, but this does not

seem to affect the fidelity of modeled hurricane frequency. The observed and model-
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Figure 1.3: Reproduced from Zhao et al. (2009), a comparison of observed (red) and
ensemble mean (blue) interannual variation in hurricane count for the North Atlantic
from 1981 to 2005 using IBTrACS observations (Kruk et al., 2010) and GFDL’s
HiRAM forced with HadISSTs to produce the integrations of four ensemble mem-
bers. The shaded area shows the simulated maximum and minimum count from the
four-member ensemble. The modeled counts are normalized by a time-independent
multiplicative factor (1.17) to match the total observed number of storms. Dotted
lines show the observed and modeled linear trends.

simulated interannual variability of hurricane count in the North Atlantic is shown
in Figure 1.3. To highlight the model’s ability to capture interannual variability, the
authors normalized the modeled counts with a time-independent multiplicative factor
(1.17) to match the total observed storm count. The ensemble mean has a correlation
coefficient of 0.83 with IBTrACs in the Atlantic, which the authors interpreted as evi-
dence that factors not transmitted through SST must not be as crucial in determining
interseasonal variability in hurricane count in the Atlantic.

Zhao et al. (2009) also went on to examine a climate change scenario, forced with
prescribed seasonally varying SST with no interannual variability. SST climate change

perturbations were obtained from coupled climate simulations and were then added to
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base climatological SST to force the atmospheric model. The authors discovered that
storm count has notable sensitivity to the choice of base climatological SST, as well as
to the differences between the SST change predicted by the various coupled climate
simulations. The authors were able to attribute these differences to differences in
Atlantic “relative SST,” defined as the average temperature in the MDR, of the basin
minus the global average tropical SST. A difference of as little as 0.15°C in relative
SST leads to a substantial difference in storm count. In other words, the authors
found that the amount of warming in the tropical Atlantic compared to the tropical
Pacific is correlated with the change in Atlantic TC frequency across the simulations.

Two additional HIRAM studies addressed the nature of shifts in TC count in
changing climates. First, Held and Zhao (2011) compared the effects of uniformly
increasing all SSTs by 2K and doubling atmospheric CO5 content, both independently
and in combination. They found that either doubling atmospheric CO5 or increasing
SST by 2 K separately each results in a 10% decrease in global TC frequency, and
a 20% decrease when the two effects are combined. Second, Zhao and Held (2012)
was an extension of Zhao et al. (2009), examining a total of ten global warming
experiments, eight using SST anomalies from different coupled models, one from
an average over 18 different coupled models, and one in which climatological SST's
were uniformly warmed by 2 K. Although there is sizable intermodel spread in the
magnitude and sign of TC genesis frequency response to climate change, this study
provided additional support for the importance of relative SST globally (although
relative SST is a better predictor of TC count perturbations in some basins than in
others).

Finally, HHRAM has been used to answer questions of the predictability of seasonal
hurricane activity. Zhao et al. (2010) computed the global SST anomaly field for the
month of June in each year from 1982-2008 using the mean of the years 1982-2005

to define the anomaly, then integrated from June 1 through the end of December for
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each year after adding the anomaly to the climatological mean SST for each month.
Compared to the scenarios forced by observed SSTs (Zhao et al., 2009), the decline
in skill from allowing June anomalies to persist is largely attributed to missing the
seasonal evolution of relative SST. In other words, this study provides further evidence
that on both seasonal and interannual timescales, SSTs provide most of the skill in
capturing hurricane count variability.

HiRAM has proved a useful tool for many applications, successfully reproducing
the interannual variability in TC count of the past several decades (Zhao et al., 2009),
allowing exploration of potential changes in TC count under future climate scenarios
(Zhao et al., 2009; Held and Zhao, 2011; Zhao and Held, 2012), providing insight into
the types of seasonally-evolving SST patterns that are important to predict for accu-
rate seasonal forecasting (Zhao et al., 2010), and generally advancing understanding
of environmental controls on TC frequency. These characteristics make it ideal for

use in this dissertation.

1.3 Dissertation Overview

This opening chapter has provided motivation for studying the relationship between
AEWSs and Atlantic TCs, summarized past work toward understanding the charac-
teristics and dynamics of AEWs and the intricate relationship between Africa and
Atlantic TCs, and asserted the relevance and past successes of TC-resolving mod-
els. The stage has been set to utilize GFDL’s HIRAM to shed further light on the
relationship between AEWs and Atlantic TCs.

Chapter 2 opens with an explanation of the experimental design in Section 2.1,
including specifications of the reanalysis products (Section 2.1.1) and model simu-
lations (Section 2.1.2). The analysis tools used throughout the study are described

in Section 2.2, including details of the diagnosis of large-scale environmental favora-
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bility using a genesis potential index (Section 2.2.1) and the method of quantifying
AEW and TC activity with a hybrid manual-automated TC-AEW tracking algo-
rithm (Section 2.2.2). The methodological choices made are justified and validated
in Section 2.3.

The core results follow in Chapters 3 through 6. First, the historical record is
revisited in Chapter 3, to clarify the relationship between AEW and TC activity.
Data from previous studies are analyzed and compared (Section 3.1), the present
tracking methodology is applied to reanalysis data to produce an updated historical
record (Section 3.2), and the past and current studies of climatological AEW data
are summarized (Section 3.3). Once the historical record is clarified, it is used to
legitimize the model for the study of AEWs in Chapter 4, exploring the reliability
of the model-produced seasonal cycle of AEW and TC count statistics (Section 4.1),
power spectra and statistical measures of AEW activity (Section 4.2), large-scale
environment (Section 4.3), interannual variability of AEW and TC count statistics
(Section 4.4), and relationship between environmental factors, AEW activity, and TC
activity (Section 4.5).

After being shown to adequately capture AEW and TC activity, in Chapter 5
the model is used to isolate the internal variability of AEW activity by removing the
effects of interannual variation in SST. The climatological simulations from Chapter 4
are briefly revisited (Section 5.1), then interannually invariant simulations are con-
sidered (Sections 5.2 and 5.3), followed by a summary (Section 5.4). In the process,
the relevance of ENSO is discussed in the context of a control simulation forced by
climatologically averaged SSTs, and an experimental simulation forced by composited
SSTs from strong La Nina years.

Next, the large-scale environment is perturbed beyond current climatological vari-
ability to examine how changes in AEW activity and overall environmental favora-

bility interact and affect TC activity in Chapter 6. This is accomplished through the

24



systematic variation of the surface albedo of Africa, the role of which is discussed
in Section 6.1. In a suite of four simulations, the albedo of Africa is prescribed as
uniform, with varying magnitude. These simulations are analyzed to help disentangle
the impacts of large-scale favorability and AEW count on TC count in Section 6.2,
and a summary of the results of the perturbed simulations is presented in Section 6.3.

The model results from Chapters 4 through 6 are considered holistically in Chap-
ter 7, to show consistency between the previous chapters and to quantify the rela-
tionship between AEW and TC count, both interannually (Section 7.1) and climato-
logically (Section 7.2). Finally, the dissertation closes with conclusions in Chapter 8,
including a summary of the key findings (Section 8.1) and recommendations for future

work (Section 8.2).
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Chapter 2

Methodology

This chapter opens with an introduction of the overarching conceptual framework of
this dissertation, and then the methodology used throughout is detailed and justified.

The goals of this study are reviewed and the overall experimental design is outlined
in Section 2.1, followed by details of the reanalysis product used to study the historical
record (Section 2.1.1) and the specifications of the model and modeling techniques
(Section 2.1.2) used to probe the relationship between AEWs and TCs. Section 2.2
provides an overview of the specific analytical techniques and tools employed, defining
the genesis potential index used to diagnose large-scale environmental favorability
(Section 2.2.1) and detailing the hybrid manual-automated tracking method used to
quantify AEW and TC activity (Section 2.2.2).

Finally, Section 2.3 provides justification for the methodological choices made,
considering the fidelity of the reanalysis selected (Section 2.3.1), the relevance of the
particular choice of genesis potential index (Section 2.3.2), and the validity of the

newly-developed tracking algorithm (Section 2.3.3).

2.1 Experimental Design

This dissertation is designed to elucidate several distinct facets of the AEW-TC rela-

tionship. The first goal, which will be addressed in Chapters 3 and 4, is to clarify the
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historical record of AEW activity and use it to legitimize the model for further study
of the AEW-TC relationship, by comparing historical model realizations against the
historical record. The former is accomplished by revisiting past studies and using
novel analysis techniques to establish a historical record of AEW and TC activity.
The model realizations are then compared with the historical record in terms of the
large-scale conditions, the seasonal cycle of AEWs and TCs, spectral measures of
AEW activity, interannual variability, and the relationship between AEWs and TCs.

Through these first two chapters of results, the second goal is also addressed:
providing evidence toward settling the debate about whether or not AEW and TC
activity are indeed historically correlated. Questions raised in Chapter 4 about the
importance of interannual variation in SST in the historical record are explored in
Chapter 5, addressing the third goal: isolating the internal variability of the modeled
AEW activity and its relationship with TC activity in the absence of large-scale
environmental differences. The fourth and final goal is to disentangle the effects
of large-scale environmental favorability and AEW activity on TC activity in more
extreme cases than the climatological record affords, by perturbing the environment
and manipulating AEW activity in Chapter 6, addressing the complex relationship
between AEWS, the large-scale environment, and TCs.

To meet these goals, the historical record as captured by reanalysis and three
separate sets of simulations are analyzed here. The technical details of the model and
the manipulation techniques used in this dissertation are spelled out in greater detail
in Section 2.1.2, but first the three central sets of simulations are described in general
terms to provide a conceptual framework.

The first set of simulations, referred to as “the climatological simulations”
throughout the rest of this dissertation, is a historical ensemble, consisting of three
ensemble members (H1, H2, and H3). Each ensemble member models the 27-year

period from 1982-2009, with observed seasonally and annually varying SSTs used as
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the lower boundary condition. Ensembles take advantage of the ability of models to
produce multiple realizations over the same time period. This expands the dataset and
provides for a better estimate of the significance of potential trends and correlations,
while also allowing quantification of the internal variability of the atmospheric system.
The climatological simulations are analyzed primarily in Chapter 4 and are revisited
in Chapter 5.

For the next two sets of simulations, collectively referred to as “the manipulated

9

simulations,” each set includes a control simulation along with experimental simula-
tion(s). For both of these sets of manipulated simulations, “the control simula-
tion” is a 20-year experiment forced by interannually invariant mean SSTs, averaged
from 1982-2005. In other words, the prescribed SSTs in the control vary seasonally,
but do not change from year to year. Other model parameters remain the same as
those of the climatological simulations.

This control is first paired with an experimental simulation forced with composite
La Nina SSTs (averaged for the strongest La Nina years, see Appendix B), referred to
as “the perpetual La Nina simulation” throughout the rest of this dissertation.
Aside from the change in prescribed SSTs, all other model parameters are held fixed,
and the perpetual La Nina simulation is also a 20-year experiment. The perpetual
La Nina simulation is analyzed in Chapter 5.

Finally, the third set of simulations has the same control experiment, this time
paired with four 20-year experimental simulations with uniform African albedo, num-
bered 1 through 4. Aside from the difference in African albedo, all other model pa-
rameters are the same as for the control. These are referred to as “the uniform
albedo simulations” or “the perturbed simulations” throughout the rest of this

dissertation. These simulations are analyzed in Chapter 6.
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Information about the reanalysis (Sections 2.1.1) and model (Section 2.1.2) follow,
including general specifications and details of the manipulation techniques used to

produce the suites of simulations mentioned above.

2.1.1 Revisiting AEW Historical Record Using Reanalysis

The primary reanalysis product used throughout this study is the NCEP-DOE AMIP-
IT reanalysis (Kanamitsu et al., 2002), henceforth referred to as NCEP-NCAR II. This
reanalysis is an updated version of an earlier NCEP-NCAR reanalysis (Kalnay et al.,
1996; Kistler et al., 2001), and was selected due to its availability and wide use. While
still having its limitations, NCEP-NCAR II includes several key improvements relative
to NCEP-NCAR I that are especially relevant to this study. Pertinent updates and
limitations are discussed below, and the adequacy of NCEP-NCAR II for studying
AEWs is explored further in Section 2.3.1.

The resolution is the same as the original NCEP-NCAR reanalysis, with a hori-
zontal spectral truncation of T62 (i.e., 210 km at the equator), 28 vertical levels, and
6-hourly output. NCEP-NCAR II incorporates precipitation observations through
NCEP/CPC global precipitation analysis (Xie and Arkin, 1997) to improve soil mois-
ture fidelity, rather than simply using the model-generated precipitation. The desert
albedo was also improved globally using the algorithm of Briegleb et al. (1986), and
especially over the Sahara, which may have relevance for the AEJ and AEW dynam-
ics. To minimize the introduction of artificial signals due to changes in observing
systems, only the years 1979-2012 are considered (Trenberth et al., 2001). It should
be noted that additional raw observational data was added after 1993 (Kanamitsu

et al., 2002), so any trends that might surface in the data may be circumspect.
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2.1.2 Using HiIRAM to Explore the AEW-TC Relationship

The version of HIRAM used in this dissertation is the same as the version used for
GFDL’s contribution to the Fifth Assessment Report of the Intergovernmental Panel
on Climate Change (IPCC AR5). This version is referred to as HIRAM2.2 and was
also used by Zhao et al. (2012), who verified that it produced TC statistics consistent
with those of earlier model versions. The technical specifications used in this study
are summarized below, followed by the details of model manipulation methods, specif-
ically, changes implemented to the prescribed SSTs as a lower boundary condition

and the African albedo.

HiRAM Specifications

HiRAM is built upon GFDL’s atmospheric model version 2.1 (AM2.1) (Anderson
et al., 2004), but with a finer resolution, a different dynamical core, modified moist
physics, and a modified convective closure. Without alterations to the moist physics
and convective closure, AM2.1 produces an excessively calm Atlantic (Zhao et al.,

2009). Some of the key features of HIRAM2.2 are detailed below.

e Dynamical Core: Uses a finite-volume core on a cubed-sphere grid topology
(Putman and Lin, 2007), which has exceptional grid uniformity and eliminates
the need for flux-form semi-Lagrangian extensions for transport processes as
well as the need for polar Fourier filtering for fast waves. Updated to improve

efficiency and stability by Zhao et al. (2012).

e Horizontal Resolution: There are 180 x 180 grid points on each face of the
cube. This means that the size of the model grid varies from 43.5 to 61.6 km

(about 0.5° or 50 km resolution).

e Vertical Resolution: Includes 32 vertical levels, with higher density of levels

near the tropopause than in AM2.1.
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e Cloud Scheme: Details of the convective closure and diagnostic cloud frac-
tion scheme assuming a subgrid-scale distribution of total water can be found in
Appendix A of Zhao et al. (2009). There was a minor retuning of this parame-
terization by Zhao et al. (2012) to achieve top-of-atmosphere radiative balance

after updates were made to the dynamical core.

e Land Model: Uses GFDL’s LM2 (GFDL Global Atmospheric Model Devel-
opment Team, 2004). The climatological simulations include dynamic vegeta-
tion, improved representations of vegetation reception of snow and rain, water
phase change in soil and snow pack, water storage and flow through global
river network. In the manipulated simulations, the albedo is prescribed and the

vegetation is static.

Sea Surface Temperature

For the interannually and seasonally varying climatological simulations, observed
SSTs from the HadISST dataset (Rayner et al., 2003) are used as the lower bound-
ary condition. Only the years 1982-2009 are examined here because of a potential
inhomogeneity in observations between 1981 and 1982 in the HadISST dataset.

In all of the manipulated simulations, SSTs vary seasonally but do not change
year-to-year. The control experiment for both manipulated simulation sets and all
of the uniform albedo experiments are 20-year simulations forced by climatologically
average SST's. The average is calculated from years 1982-2005 of the HadISST dataset,
resulting in a seasonally varying climatological SSTs with no interannual variability.

The SSTs from the strongest La Nifia years (1985, 1988, 1998, 1999, and 2000) are
averaged and used as the lower boundary condition for the 20-year perpetual La Nina
simulation. These years were chosen using the NOAA /NWS Cold and Warm Episodes
by Season (2014) Oceanic Nifio Index (ONI) chart as a reference. Specifically, years

for which both the July-August-September ONI and August-September-October ONI
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Figure 2.1: La Nina minus climatological SSTs for the months of August through
October at 1 degree resolution, calculated using the Hadley Centre Global Sea Ice
and Sea Surface Temperature (HadISST) dataset (Rayner et al., 2003). Land is shown
in grey.

were both less than -0.5 were included in the composite. For more information on
the ENSO classification scheme used throughout this dissertation, see Appendix B.
The mean SSTs from the control simulation are subtracted from the La Nina
composite to obtain the La Nina SST anomaly. The resulting average SST anomaly
for the months of August through October is shown in Figure 2.1. The SST anomaly in
Figure 2.1 reveals characteristic La Nina features, such as cooler ocean temperatures

across the east-central equatorial Pacific.
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Figure 2.2: Average African surface albedo for the months of August through October.

African Albedo

For simulations in the climatological ensemble, the control simulation, and the per-
petual La Nina simulation, albedo is prescribed to be realistic over Africa (GFDL
Global Atmospheric Model Development Team, 2004). The average African albedo
for the months of August through October is shown in Figure 2.2.

Figure 2.2 shows total surface albedo, i.e., the ratio of mean upward to downward
shortwave radiation at the surface, and is therefore a function of the near-infrared
(NIR) and the visible (VIS) incoming radiation and reflectance. To manipulate the
albedo for the purposes of the uniform albedo simulations, it is necessary to consider

these NIR and VIS albedo components separately.
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The NIR and VIS components of the isotropic albedo are shown separately in
Figure 2.3 for MODIS data (Schaaf et al., 2002), obtained through personal commu-
nication (Malyshev, 2014). Through visual inspection of these albedos, a ratio of 2:1
for NIR to VIS albedo appears reasonable, and is therefore used when prescribing the
NIR and VIS albedo for the uniform albedo simulations. Because approximately half
of the incoming solar radiation is visible and half is near-infrared on average, the total
albedo can be estimated from the average of the NIR and VIS albedo parameters.
Albedo parameters for the uniform albedo simulations are given in Table 2.1, and

these simulations are subsequently referenced by their “Total Albedo.”

Table 2.1: Uniform Albedo Simulation Isotropic Albedo Parameters

Simulation Isotropic VIS | Isotropic NIR | Total Albedo
uniform albedo 1 0.05 0.10 7.5%
uniform albedo 2 0.10 0.20 15%
uniform albedo 3 0.20 0.40 30%
uniform albedo 4 0.30 0.60 45%

For the uniform albedo simulations, the isotropic African albedo is prescribed to
be uniform over the entire continent and the land type is prescribed to be homogenous.
Because the soil albedo also has a weak dependency on the azimuth angle, the total
albedo is not completely uniform, and does vary latitudinally with the seasons (Schaaf
et al., 2002) and geographically with the variation in the diffuse to direct ratio of solar

radiation.

2.2 Analysis Tools

Two analytical tools that are used throughout this dissertation warrant an extended
introduction. First, the concept of a genesis potential index (GPI) is reviewed and

the version of GPI used throughout this work is defined in Section 2.2.2. Next, the
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method of quantifying AEW and TC activity is detailed in Section 2.2.2. For further
justification of these methodological choices, consult Sections 2.3.2 and 2.3.3.

As mentioned in Section 1.2.2, the conflicting results of past works highlight the
strong sensitivity of the inferred AEW-TC relationship to the diagnostic method and
thresholds for detecting AEW activity. A diverse array of tracking techniques have
been used in past studies, including statistical, manual, and automated algorithms,
each with its own limitations and strengths. Section 2.2.2 provides a short literature
review of these past techniques and then details the hybrid manual-automated method

used throughout this study.

2.2.1 Genesis Potential Index

Motivated by the seminal work of Gray (1979), Emanuel and Nolan (2004) presented
a genesis index, typically referred to as the Genesis Potential Index (GPI), which is

used throughout this study and given by

GPI = |105n|3/2(%>3(%)3(1 + 0.1Viear) 2, (2.1)

where 7 is the absolute vorticity at 850 mb in units of s7, 7 is the relative humidity

1 and

at 600 mb in units of percent, Vi is the potential intensity in units of m s~
Vihear 18 the magnitude of the vertical wind shear between 850 and 200 mb in units of
m s~ . The potential intensity (Vyo; Bister and Emanuel, 2002) is the theoretically
maximum wind speed sustainable given the convectively available potential energy,
and is calculated from SST, sea level pressure (SLP), and the vertical profile of tem-
perature and specific humidity at each grid point, using a publicly available script
(Emanuel, 2014).

A refinement of the index from Gray (1979), GPI was developed starting from a

large set of environmental variables that have been previously shown to have skill in
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predicting TC variability, but variables that might not have broad application beyond
the current climate conditions were avoided. The index was trained on NCEP-NCAR
reanalysis (Kalnay et al., 1996) for 1950 through 2004 using a combination of multiple
regression and common sense to select a suitable combination of predictors, combining
monthly averages of large-scale environmental indicators into one powerful index.

This index is typically averaged over some region of interest, such as an entire basin
or hemisphere, to quantify the expected level of TC activity given the environmental
parameters. Emanuel and Nolan (2004) showed that the index has skill in reproducing
monthly mean storm count in the northern and southern hemispheres, and Camargo
et al. (2007a) further detailed the development of the index and used it to determine
which environmental factors communicate the influence of ENSO on TC activity.

Since interest in creating empirical indices for genesis was revived by Emanuel and
Nolan (2004), there have been several publications that either investigate the effec-
tiveness of or attempt to improve upon this definition of GPI (Camargo et al., 2007a,b,
2009; Emanuel, 2010; Tippett et al., 2011; McGauley and Nolan, 2011; Bruyere et al.,
2012). This is an area of active research and there is not currently a consensus on
which measure of genesis potential is best suited for the purposes of this study—
diagnosing the favorability of the large-scale atmosphere. Because subsequent studies
that have attempted to improve the prediction of the likelihood of genesis begin from
GPI as defined above by Emanuel and Nolan (2004), and the index has been widely
used since its development, this incarnation of GPI is used throughout this study.
The rationale behind this decision and potential limitations are discussed further in
Section 2.3.2.

Throughout this study, GPI is calculated from interannually averaged monthly
mean reanalysis and model fields. Spatial maps of GPI are shown for various purposes
(see Figures 4.7, 5.8, 6.4, and 6.6), and averages of both GPI and its individual

components (vorticity, relative humidity, potential intensity, and shear) are taken
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over the MDR (10°N to 20°N; 20°W to 80°W) and the entire Atlantic basin (5°N to
45°N; between the coasts of the United States and Africa), which are used as measures

of environmental favorability.

2.2.2 Hybrid Manual-Automated Tracking Algorithm

AEWs are challenging to identify and track, because unlike TCs, there are no agreed-
upon structure or amplitude thresholds that determine whether a disturbance should
be classified as an AEW. As past studies have shown, AEWSs often have complicated
structures (Pytharoulis and Thorncroft, 1999) and vary drastically in strength (Hop-
sch et al., 2007; Zawislak and Zipser, 2010), which can cause tracking algorithms
to systematically exclude certain types of AEWs (Bain et al., 2011). In examining
past studies, it is self-evident that the method of AEW tracking has an impact on
the ultimate conclusions drawn (see Sections 1.2.2 and 3.1). Past techniques used to
track AEWs fall into three categories: statistical (Burpee, 1972, 1974; Albignat and
Reed, 1980; Lau and Lau, 1990; Duvel, 1990; Thorncroft and Rowell, 1998; Diedhiou
et al., 1999; Ventrice et al., 2011), automated (Thorncroft and Hodges, 2001; Hopsch
et al., 2007; Caron et al., 2010; Agudelo et al., 2011; Bain et al., 2014), or manual
(Carlson, 1969a,b; Reed et al., 1988a; Avila and Clark, 1989; Avila et al., 2000; Fink
and Reiner, 2003; Fink et al., 2004; Chen, 2006; Ross and Krishnamurti, 2007; Kerns
et al., 2008; Zawislak and Zipser, 2010; Snyder et al., 2010).

Statistical tracking methods often utilize power spectra and band-pass filter-
ing, which aggregate and smooth results, leaving certain potentially interesting details
difficult to recover. These methods are appropriate for applications when the details
of individual waves are less important and the focus is on aggregate variability in
smooth fields. To address the questions raised in this study, it is important to more
precisely assess interannual variability, and to discern which and how many individual
AEWs develop into TCs and how many TCs were spawned by AEWs. For this reason,
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statistical approaches are not compatible with the primary goals of this study, but are
used to corroborate the fidelity of the hybrid manual-automated tracking algorithm
in Section 2.2.2.

Automated tracking methods can be appealingly efficient, but the varied char-
acteristics of AEWs cause complications. Thorncroft and Hodges (2001) were the first
to develop an automated tracking system for use with AEWs, from the feature track-
ing algorithm of Hodges (1995), to objectively trace closed relative vorticity maxima
at two atmospheric levels that exceeded a threshold value, had a lifetime of more
than 2 days, and travelled at least 10° zonally in reanalysis data. This method re-
sults in fewer AEWs and greater interannual variability than studies employing other
methods, e.g., Avila et al. (2000), and the authors report that it is less reliable in
interpreting AEWs with multiple vorticity centers or distinguishing between AEWs
and mesoscale convective systems.

Agudelo et al. (2011) describe a fundamentally different algorithm specifically de-
signed for AEWs. This method claims to capture all waves moving into the Atlantic
ocean, even if a wave is only evident at a single level or for a single variable. How-
ever, the algorithm’s complexity and simultaneous utilization of a large number of
fields make it unwieldy for use on typical model output. On the other hand, Bain
et al. (2014) use a manual-inspired automated method, utilizing object-oriented im-
age processing to identify propagating waves from Hovmoller diagrams in the manner
a human technician employing a manual method might. Although Bain presents a
computationally efficient and reliable method, it only provides details on AEW count
and does not track developing vorticity centers. In order to preclude false positives
when taking the AEW record and matching it with the TC record, it would be diffi-
cult to completely eliminate the human technician. Despite some promising progress
in the literature, automated tracking methods are not suitable for this study, given

the necessity of reliably matching individual AEWs with particular TCs.
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Manual tracking methods are employed almost exclusively in early studies of
AEW variability, and there has been a recent resurgence of manual methods in the
literature. Unlike feature-tracking automated analyses, early independent manual
analyses exhibit good agreement (Fink et al., 2004). Many recent manual methods
incorporate multiple steps to locate and verify AEWs, such as examining Hovmoller
diagrams of vorticity and wind anomalies, streamline maps, and band-pass filtered
relative vorticity. Because AEWs are difficult to reliably track using automated meth-
ods and the goals of this dissertation require that more information be retained than
is available from statistical methods, a manual method of AEW detection and classi-
fication is detailed below and used in this study.

Although it is argued above that manual analysis may be a necessary inconve-
nience in AEW tracking and TC-AEW matching, automated TC trackers are more
reliable, owing to the well-defined structure and intensity thresholds of TCs. An auto-
mated method has already been developed and validated for tracking TCs in HIRAM
(Zhao et al., 2009, 2012), so an automated TC-tracker is used throughout this study.
A general description of the automated TC-tracking algorithm is provided below. The
results of these two detection methods are matched a posteriori to determine which
TCs were spawned by AEWSs, as well as which AEWs became TCs. This matching
procedure is also described below.

While the previous studies detailed above show that tracking methodology does
indeed have an impact on the ultimate conclusions drawn, especially when it comes
to AEW frequency, Bain et al. (2014) argue that “the self-consistency of any method
is perhaps more important than the comparison with other methods as long as the
feature characteristics are broadly similar.” For that reason, the methods detailed
below are consistently applied to all experimental cases. First the manual detection

of AEWSs is described, followed by details of the automated detection of TCs, and the
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general techniques used to manually match the AEW and TC datasets. Finally, the

section closes with a case study.

Manual Detection of AEWs

A manual method is employed to detect AEWSs in model simulations. Namely,
Hoévmoller diagrams of average meridional winds at 850 mb, averaged from 10°N
to 20°N, between 15°W and 30°W, from June through November (i.e., hurricane sea-
son) are generated and analyzed (e.g., Figure 2.4), and when necessary, corroborated
by daily synoptic maps of 850 mb vorticity (e.g., Figure 2.5). Averaging between 10°N
and 20°N captures signatures of waves propagating along both the AEJy and AEJg
without double-counting potential “simultaneous twin vortices” (Fink et al., 2004).
Although averaging may cause some weak waves to be excluded from the count, previ-
ous studies have indicated a significant positive relationship between wave amplitude
and subsequent development (Thorncroft and Hodges, 2001; Agudelo et al., 2011).

In order to qualify as an AEW and be counted for the purposes of this study,
an area of positive meridional wind (the trailing edge of a wave) must be evident at
the eastern boundary of the domain of the Hévmoller diagram and propagate to the
western boundary without significant interruption. This ensures waves are of African
origin, since the coast of Africa is around 15°W between 10°N and 20°N, and that
waves make it to the MDR, giving them a chance to develop into TCs, and thus
making them relevant to this study. This requirement is relaxed for marginal cases,
in which coherent waves travel out of the range averaged to produce the Hovmoller
diagrams (i.e., north of 20°N or south of 10°N) during part of their lifetime. So
long as a coherent positive vorticity signal is observed to propagate westward in
contemporaneous synoptic maps, these features are also counted.

Figure 2.4 is an example Hovmoller diagram generated to manually identify and

count AEWSs for each year of every HIRAM model run. This particular example comes
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from 1988 in climatological simulation H2, and is representative of a typical year in
which some but not all AEWSs develop into TCs, and some but not all TCs have their
origins in AEWSs. The terminus of each wave counted is denoted with an open circle,
and a filled circle with yellow border denotes waves that develop into tropical storms.
The labels W1, W2, and W3 correspond to the vorticity centers labeled in Figure 2.5.

In 1988 of climatological simulation H2, there were two AEWs in June, four in
July, six in August, five in September, five in October, and two in November. A total

of eight of these twenty-four AEWs developed into tropical storms in this model year.

Automated Detection of Atlantic TCs

Output from the tropical cyclone detection and tracking algorithm described in Zhao
et al. (2009) and Zhao et al. (2012) is used with the help and permission of the authors
to identify Atlantic tropical storm origins, which are in turn used to manually diagnose
whether or not each model-produced tropical storm is AEW-induced. The algorithm
is briefly described below, but full details can be found in the original papers (Zhao
et al., 2009, 2012), including more information about sensitivity to parameter choices.
The algorithm first locates all maxima in 850 mb relative vorticity greater than
1.6x10~*s~! that also coincide with a local minimum in sea level pressure and a warm-
core, both located within 2° of each vorticity maximum. These “potential storms” are
then subjected to trajectory analysis, in which the snapshots of the features located
in the first step are linked together into trajectories. Any potential storms that do not
belong to a trajectory that lasts 3 days or longer and has a maximum surface wind
speed greater than 17 m s~! during at least three days is deleted from the record.
Note that while the model underestimates storm winds due to its relatively coarse
spatial and temporal resolutions (see Section 2.1.2), this is compensated for by an
overestimation due to the fact that the “surface” level in the model is located higher

in the atmosphere than that used in observationally based records, such as IBTrACS
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(Kruk et al., 2010). These two effects roughly cancel out, addressing the concerns
originally raised by Walsh et al. (2007) about modeled storm intensities. In this
dissertation, all intensities of cyclones detected by the algorithm are included, and
are referred to interchangeably as “tropical storms” and “TCs,” regardless of strength.

The tracker outputs details (e.g., year, month, day, hour, longitude, latitude, wind
speed, vorticity maximum, central pressure) of all remaining storms that made it
through the trajectory analysis, both as snapshots in time and also grouped together
into contiguous tracks. For the purposes of this study, the trajectory origins output
by the algorithm are utilized. In the case of the historical reanalysis, the IBTrACS
database (Knapp et al., 2010) is used instead of the automated TC detection algorithm
output. Starting from the tropical storm origins as determined by the algorithm or
IBTrACS, each vorticity center is manually tracked backward in time using synoptic
maps to determine whether or not it emerged from the coast of Africa. More details

on the matching of tropical storms and AEWs follow.

Manual Matching of AEW and TC Datasets

Given the Hévmoller diagrams from the manual AEW tracker (e.g., Figure 2.4) and
the list of tropical storm origin points from the automated TC tracker, the two
datasets are matched through manual analysis of synoptic maps of 850 mb relative
vorticity (e.g., Figure 2.5). This process is first described generally, followed by an
illustrative case study.

Synoptic maps of 850 mb vorticity are produced daily from May 1 through Novem-
ber 30 for every year of every simulation. Each vorticity map covers the region from
100 to 15°W and 0 to 45°N. The maps are colorized so that positive vorticities from
0 to 1.0 x 107* s7! are shown in increasingly dark reds, and negative vorticities from
0 to -1.0 x 10~* s~! are shown in increasingly dark blues. Since the threshold for

tropical storm relative vorticity in the automated tracker is 1.6 x 10~* s~!, tropical
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storm strength vorticities present as white space, making them straightforward to
match with the automated tracker output.

Tropical storm origins diagnosed by the automated TC tracker are located on the
relevant daily synoptic map by latitude and longitude, and then are manually traced
back in time by examining and matching earlier daily synoptic maps. Each storm is
traced backward in time individually, one storm at a time. Even at times before each
feature has reached tropical storm strength, it is common to see an associated region
of positive vorticity present that is traveling westward and/or northward in time.

Whether or not a given storm has African origins (i.e., can be traced back to a
region of positive vorticity originating on the African coast) is systematically noted, as
well as the date that the storm crossed out of the domain of the associated Hévmoller
diagram (i.e., north of 20°N or west of 30°W) if it did indeed have African origins.
It would be exceedingly difficult to perform this type of analysis with an automated
tracker, as AEWs and the regions of positive vorticity associated with them often
do not have well-defined structures and present at various strengths and degrees of
coherence. However, it is relatively simple for a technician with a trained eye to
“follow” AEWSs as they travel across the Atlantic.

The recorded date and the synoptic tracking allow an AEW associated with a
tropical storm to be marked on the relevant Hovmoller diagram as having developed
into a TC, with no ambiguity. Sometimes more than one TC originates from the
same AEW, either because the wave was multi-centered or a storm dissipated and
then re-intensified. Many of the TCs identified by the tracker did indeed dissipate and
re-intensify, but are clearly connected in time by a surviving region of positive relative
vorticity. It is not uncommon for this to happen in the real world, e.g., Humberto in
2013 (Landsea and Blake, 2014). In these cases, each intensification is counted as a

new origin point by the tracking algorithm.
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The converse, one TC originating from multiple AEWSs, occurs rarely. This
presents as very occasional merger events of two separate AEWs. Mergers are readily
distinguished from multi-centered AEWSs, because they initially present as temporally
separated bands of positive meridional winds on the associated Hovmoller diagram.

For consistency, AEWs are simply tallied as developing or non-developing, and
tropical storms as having African origins or not, regardless of whether there was more
then one storm or more than one associated AEW. The matching method detailed
in this section produces a dataset of monthly AEW counts, developing AEW counts,

TC counts, and African TC counts.

Case Study of Manual Matching Technique

To elucidate the procedure described above, a representative case study is presented
here. The data for this case study come from the year 1988 in climatological simu-
lation H2, a typical year in which some but not all AEWs developed into TCs, and
some but not all TCs had their origins in AEWSs. Specifically, synoptic 850 mb vor-
ticity maps from August 18 through August 29, 1988 are shown in Figure 2.5. In this
period of time, two tropical storms formed: one that had African origins, and one
that originated from a mid-latitude frontal system.

The daily plots in Figure 2.5 should be read chronologically from left to right,
top to bottom (note the date in white on the upper left corner of each plot). The
850 mb vorticity over water is shown in filled color contours, with land overlaid in
gray. There are three AEWSs labeled sequentially, W1, W2, and W3, each of which is
also labeled on the corresponding Hovmoller diagram from Figure 2.4.

On August 19, a wave can be seen leaving the coast of Africa, which is labeled
W1 in yellow. W1 crosses 30°W around August 20 and moves westward for several
days, beginning to curve northward around August 26, and eventually developing

into a tropical storm on August 29, labeled TS1 in yellow. In diagnosing the origins
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of TS1, the associated positive vorticity center was tracked backward in time from
August 29, and was seen to cross 30°W around August 20, two days after having left
Africa on August 19. Thus, TS1 is said to be of African origins and W1 is said to be
a developing AEW.

A second tropical storm forms on August 29 as well, labeled TS2 in yellow. How-
ever, following the positive vorticity center associated with TS2 back in time shows
that it did not originate from Africa. Instead, this tropical storm developed out of
a mid-latitude frontal system. As expected, tropical storms in the model that were
not seeded by AEWSs owe their origins to either mid-latitude frontal systems, random
ITCZ convection that is unassociated with an AEW, or to the orographic influence
of islands.

Two other AEWs are present over the range of dates shown in Figure 2.5. A
second AEW is apparent at the coast of Africa on August 23, labeled W2 in yellow.
However, this wave curves north much more quickly, and dissipates by the end of this
time series. A third AEW (W3) forms near the end of this case study, on August 27,
crossing 30°W around August 29. Although not shown in Figure 2.5, this wave also

eventually develops into a tropical storm.

2.3 Justification of Methodological Choices

This section provides justification for some of the methods used in this research,
comparing the selected reanalysis to an alternative in Section 2.3.1, considering the
strengths, limitations, and relevance of the particular choice of genesis potential index
in Section 2.3.2, and validating the tracking algorithm against spectral metrics and

official reports in Section 2.3.3.
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2.3.1 Reanalysis Fidelity

Although NCEP-NCAR II is an improvement over the original NCEP-NCAR reanal-
ysis (Kalnay et al., 1996), correcting several errors and incorporating upgrades, it
is self-admittedly not “a next-generation reanalysis” (Kanamitsu et al., 2002). This
might raise concerns about its adequacy in reproducing AEW statistics, which are ad-
dressed here through comparison with the ERA-Interim reanalysis (Dee et al., 2011).

ERA-Interim has the advantage of being both “next-generation” and having been
produced by an entirely separate institute. Despite known inconsistencies between
reanalyses, especially in the tropics (Trenberth et al., 2001), NCEP-NCAR II (Kana-
mitsu et al., 2002) and ERA-Interim (Dee et al., 2011) reanalyses show good agree-
ment in their representation of AEWs as measured using the present analytical tools,
specifically in Hovmoller diagrams of 850 mb meridional winds and synoptic maps of
850 mb relative vorticity.

The year 2008 was selected for a random check and detailed comparison of the
two reanalyses. Applying the tracking methodology detailed in Section 2.2.2 yields
not only identical counts for AEWs and developing AEWSs, but one-to-one agreement
for individual events. As shown in Figure 2.6, there is remarkable agreement between
the two reanalyses when comparing Hovmoller diagrams. Note that climatological
simulation H1 is also shown in Figure 2.6, to demonstrate that the model produces
realistic AEW signals that resemble those of the reanalyses, but there is no expec-
tation that individual events from the model should correspond to events in history,
since the model’s atmosphere is freely evolving.

In the year examined and partially shown in Figure 2.6, there are some “marginal
cases” (see Section 2.2.2) of AEWSs that are more pronounced in one of the reanalyses
than the other (e.g., in mid-July, areas of positive vorticity that seem that they may
have either dissipated or left the domain before reaching the western boundary in the
ERA-Interim plot more clearly make it to the MDR in the NCEP-NCAR II plot).
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However, in the tracking procedure implemented, such a marginal case triggers the
verification of the disturbance in synoptic maps of 850 mb vorticity, to check if a
coherent positive vorticity signal can be seen to continue to propagate westward. For
this reason, the ultimate count statistics produced by the tracking methodology as
applied to each reanalysis agree for the year 2008.

The synoptic vorticity maps may appear to show poorer agreement than the
Hovmoller plots at first glance. This is because NCEP-NCAR II has lower resolution
and thus tends to be characterized by more muted signals that are less spatially intri-
cate when compared to ERA-Interim (for an example, see Figure 2.7). However, at
least in the year 2008, the features required for AEW tracking are adequately resolved
for the purposes of this study. For example, Figure 2.7 shows the 850 mb vorticity
for August 1, 2008 in each reanalysis. In both the NCEP-NCAR II and ERA-Interim
representations, the AEW that clearly manifests at the end of July in the Hévmoller
diagrams is shown crossing 30°W. Although NCEP-NCAR II admittedly shows less
detail in the vorticity field, it is of sufficient resolution to track a disturbance as it
propagates and determine if it is associated with a downstream TC genesis event.

It is possible that other years may fare less favorably in a side-by-side comparison,
and the rare discrepancies mentioned in Section 2.3.3, which compares the entire his-
torical record produced using NCEP-NCAR II to National Hurricane Center Tropical
Cyclone Reports, may be due to issues of resolution. Since the reanalyses were only
directly compared for one year, it would be interesting to quantify the level of varia-
tion between different reanalyses, along the lines of Schenkel and Hart (2012). Since
the agreement between NCEP-NCAR II and ERA-Interim demonstrated in this sec-
tion is adequate to inspire sufficient confidence in a historical record produced using
the present methodology applied to NCEP-NCAR II to address the goals set forth in
Section 2.1, a more detailed intercomparison of representations of AEWs in various

reanalyses is left for future work.
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(a) NCEP-NCAR II Reanalysis (b) ERA-Interim Reanalysis
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Figure 2.7: Relative vorticity at 850mb on August 1, 2008, for (a) NCEP-NCAR II
Reanalysis (Kanamitsu et al., 2002), and (b) ERA-Interim Reanalysis (Dee et al.,
2011). Note: scale identical to that of Figure 2.5, i.e., dark red is 0.0001 s™!, dark
blue is -0.0001 s~

2.3.2 Relevance of Genesis Potential Index Choice

In general, GPI serves two purposes in this study: (1) providing an intuitive feel
for changes between different model simulations though visual inspection of spatial
plots, and (2) identifying various large-scale predictors of favorability (i.e., spatially
averaged total GPI, as well as each of its constituent components: absolute vortic-
ity, relative humidity, potential intensity, and shear) and quantifying their relative
importance in comparison to AEW count in the uniform albedo simulations. A key
reason the Emanuel and Nolan (2004) GPT is employed in this study is that these
goals do not necessarily align with those of more recently developed measures of the
likelihood of cyclogenesis. Additionally, as explained in Section 2.2.1, the index is in
wide use and most updated indices use it as a starting point.

Gray (1979) was the first to introduce an empirical index to link large-scale envi-
ronmental parameters to the likelihood of genesis, and there has been a resurgence of
interest in such indices in recent years (Emanuel and Nolan, 2004; Sall et al., 2006;

Camargo et al., 2007a,b; Bye and Keay, 2008; Emanuel, 2010; Tippett et al., 2011;
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McGauley and Nolan, 2011; Bruyere et al., 2012). Genesis potential indices have
a wide variety of contemporary uses, and have garnered attention as a proxy for
changes in the number of TCs in changing climates, specifically in situations where
only large-scale fields are available due to computational limits (Ryan et al., 1992;
Royer et al., 1998; Camargo et al., 2007b). This is not the situation here, as the model
used throughout this study reproduces realistic TC activity and variability dynami-
cally (see Section 1.2.3). Therefore it is not necessary to use an index to statistically
down-scale in order to surmise the TC frequency.

The notion of a “genesis index” may also be thought of as a useful way to diag-
nose the favorability of the large-scale environment in an average sense, to determine
whether changes observed in TC frequency are due to environmental favorability or
changes in the number of “seeds,” such as AEWs. GPI, the genesis index used here
and defined in Section 2.2.1, is well-suited to this purpose, as it has previously been
used to explore the relative importance of various environmental factors and assess
the large-scale favorability for TCs (Camargo et al., 2007a, 2009). While there have
been many proposed improvements to GPI, these improvements have not focused on
accurately diagnosing the large-scale favorability, but instead on producing reliable
estimates of TC frequency at various temporal and spatial scales, for various purposes.
In the process of tuning to these applications, such studies make assumptions that
are not necessarily relevant to this investigation, e.g., McGauley and Nolan (2011)
build in the assumption that “seeds for cyclogenesis (preexisting disturbances) remain
somewhat fixed in frequency for a given period of time and location.”

Caron and Jones (2011) used Emanuel and Nolan’s GPI to argue that changes in
TC count associated with changes in AEW activity were likely due to the large-scale
environment and not the AEWs themselves, by correlating average TC count with
GPI and its constituent components and comparing the correlation strength to that

between TC count and AEW activity as measured by Sahel wind variance (which may
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be problematic, as discussed in Section 2.3.3). In a sense, a goal of this work is to test
and reevaluate the conclusions drawn by Caron and Jones (2011), as it seems possible
their findings were influenced by their choice of metric to characterize AEW activity.
It is logical to use the same definition of GPI as Caron and Jones (2011) in reevaluating
their conclusion that AEW activity does not provide additional information beyond
the large-scale favorability, so as not to change multiple variables.

Although there are multiple reasons to use the GPI given in Equation 2.1, there
are some known limitations and shortcomings that must be considered. The original
index set forth by Emanuel and Nolan (2004) does not have meaningful dimensions
(Emanuel, 2010) and its derivation had a component of subjectivity that means it
is not reproducible (Tippett et al., 2011). Bruyere et al. (2012) found that GPI is
able to capture mean intraseasonal variation, but is much less skillful in reproducing
interannual variability. Depending on the purpose, many authors have argued that
the individual components of GPI (absolute vorticity, relative humidity, potential
intensity, and/or shear) are more or less effective, or perhaps even flawed (Emanuel,
2010; Tippett et al., 2011; McGauley and Nolan, 2011; Bruyere et al., 2012). These
conclusions may depend on differences in timescales, regions, or range of climates
considered, and examining these discrepancies warrants further study.

Limitations aside, spatial plots of GPI calculated from monthly mean data fields
capture changes between different simulations. Because there is still debate over which
parameters are most important or relevant for diagnosing the large-scale favorability
for TC formation, each component of GPI is considered separately whenever used
quantitatively, namely in Chapter 6. Consideration of each component separately
indicates that one of the most questioned parameters, relative humidity, may be the
most relevant for these simulations (see Section 6.2). This lends further credence

to the use of Emanuel and Nolan’s GPI over more recently developed indices that
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eliminate, replace, or minimize the dependence on relative humidity (Emanuel, 2010;

Tippett et al., 2011; Bruyere et al., 2012).

2.3.3 Tracking Algorithm Validation

While the tracking algorithm detailed in Section 2.2.2 is rigorously defined and re-
producible, any method that involves manual analysis is liable to have a component
of subjectivity. To provide a different perspective and an independent validation of
the tracking methodology, statistical measures of AEW activity are first considered,
and then the historical record produced here is compared with National Hurricane
Center (NHC) Tropical Cyclone (TC) Reports (NHC Data Archive, 2014).

It is worth noting that spatial maps and averages of the variance of meridional
winds at 850 mb were also considered as an alternative measure of AEW activity,
but were found to have no correlation with AEW count. Hopsch et al. (2007) also
found that 2-6 day filtered meridional wind variance at 850 mb did not compare
favorably with their measure of AEW count. For this reason, past studies that have
used variance as a measure of AEW activity should be approached with caution, and
it should be noted that simple variance does not seem to be a suitable substitute for

AEW count.

Comparing AEW Counts with Statistical Measures of Activity

Following a similar approach as Lau and Lau (1990), who calculated power spectra for
several regions of enhanced 850 mb relative vorticity variability, including the eastern
Atlantic and western Africa, it is possible to produce power spectra that characterize
AEW activity for each of the simulations considered in this study. Plots of power
spectra for individual simulations are discussed in the relevant chapters, but here two
key features of these spectra are considered as potential proxies for AEW activity:

the spectral centroid and the percent power located in the 3-5 day band.
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All spectra (see Figures 3.6, 4.3, and 6.3) are averaged interannually and pre-
sented as plots of the power density multiplied by frequency on a natural logarithm
of frequency scale, as Zangvil (1977) showed that this area-conserving transforma-
tion was the most useful for visualizing and isolating dominant scales of activity. In
this transformation, red noise appears as a horizontal line, and areas where there is
significant departure from that line signal the dominant time scales of variability.

The power spectra and the corresponding spectral statistics were calculated from
1-10 day band-pass filtered 850 mb meridional winds, averaged between 10°N and
20°N, near the coast of Africa (15°W), from six-hourly data between August 1 and
October 31. The meridional winds and the region chosen were selected to be easily
physically relatable to the Hévmoller diagrams used to count AEW activity, and to
be an objective measure of the character of the variance at the coast of Africa. The
spectra are quite noisy for individual years, and were therefore averaged to produce
a characteristic spectrum for each simulation.

The spectral centroid is selected as the first characteristic property of the spectra
to be examined, because it is the weighted mean of the frequencies present in the

signal, and indicates the “center of mass” or characteristic frequency of the spectrum:

> vP()

centroid (frequency) = S———= (2.2)

2 P)”

where v is the frequency, P(v) is the power as a function of frequency, and all frequen-
cies in the 1 to 10 day bands are included in the sum. This represents the characteristic
frequency of variability, which is converted to a timescale in days for each simulation
(see Figure 2.8a), for easier interpretation of physical meaning. Decreasing centroid
(timescale) typically corresponds to increasing AEW activity.

The second spectral characteristic considered is the percent power located in the

3-5 day band. This is calculated from the area under the curve between 3 and 5
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days, divided by the area between 1 and 10 days. Figures 3.6, 4.3, and 6.3 show
this graphically, plotting v P(v) for the entire 1-10 day band, with the 3-5 day band
highlighted in cyan. Activity characteristic of AEWSs typically occurs in this band, and
the fraction of the variability serves as a proxy for the total AEW power, compared
to all scales of variability. Normalizing by total power allows for better comparison
between models and reanalyses of varying resolutions. An increase in the percent
power in the 3-5 day band typically corresponds to increasing AEW activity (see
Figure 2.8b).

Both spectral measures show statistically significant (at the 97% level or higher)
correlation with the AEW count as determined from the tracking algorithm (see
Section 2.2.2) when considering all model simulations and the reanalysis. Correlating
the count with spectral centroid yields a coefficient of determination of R? = 0.501
(p = 0.02). The count and percent power statistic have a correlation with R* = 0.676
(p = 0.003).

Inspecting the scatter plots in Figure 2.8, two points are obvious outliers: the
NCEP-NCAR II reanalysis, and the fourth uniform albedo simulation. Removing
these outliers, both spectral measures show statistically significant (at the 99% level or
higher) correlation with the AEW count as determined from the tracking algorithm,
with a coefficient of determination of R* = 0.951 (p = 0.00004) for the spectral
centroid, and R? = 0.812 (p = 0.002) for the percent power metric. The reanalysis
may be an outlier due to the difference in resolution, as shown in Figures 2.6 and 2.7
from Section 2.3.1. In the case of both outliers, one must consider the centroid and
the percent power together to make sense of the change in AEW count.

From Figure 2.6, it is clear that the reanalysis exhibits a similar timescale of
AEW variability to the model (and thus one would expect similar average count
statistics), but Figure 2.7 shows that the overall activity is weaker and less defined.

This is also apparent in the power spectrum itself-because of the coarser resolution
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in NCEP-NCAR II as compared with the model, the AEW band is less distinct (see
Figure 4.3). Since the AEW band is less distinct, the statistics are more heavily
influenced by the less relevant frequencies of variability and are therefore less reliable
indicators of AEW activity.

This is also true in the fourth uniform albedo simulation, but for different reasons.
The fourth uniform albedo simulation is characterized by strong shear over the eastern
Atlantic, which may be responsible for the overall decrease in power. Note that the
spectral centroid seems to indicate that the fourth uniform albedo simulation should
have a much higher AEW count than the third, but the percent power implies that the
fourth would have a similar but somewhat lower AEW count to the third. Using the
manual tracking methodology, the two simulations have statistically indistinguishable
AEW counts, which is not surprising when considering both the centroid and the
percent power together.

In general, the spectral centroid and the percent power metrics typically agree
on the magnitude and direction of the change in AEW activity between most model
runs, and further agree with the AEW activity as diagnosed by count. However,
the spectral centroid and the percent power each tells a slightly different story, and
both must be considered jointly to parse physical meaning. It is difficult to represent
a discrete phenomenon (e.g., event count) with continuous measures (e.g., spectral
metrics, variance), so while spectral metrics can provide insight on the nature of the

AEW activity, they do not replace count.

Confirming Historical TC Origins with Tropical Cyclone Reports

Further confirmation of the reliability of the manual-automated matching technique
can be found in a curated archive of the synoptic origins for each Atlantic TC in
the study period. The NHC has released an individual TC Report for every tropical

storm since 1958, e.g., Landsea and Blake (2014), which contains “comprehensive
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information on each storm, including synoptic history, meteorological statistics, ca-
sualties and damages, and the post-analysis best track” (NHC Data Archive, 2014).
These reports are written by individual synopticians and are not completely uniform
in methodology, but they are informed by all available operational fields and repre-
sent the authoritative account of each TC. Reports prior to 1988 are only available as
scanned images and early reports are not always precise in their usage of terminology
such as “tropical wave,” but from these records it is possible to determine storm ori-
gins, specifically, whether or not an individual TC developed from or was influenced
by an AEW.

After applying the AEW-TC counting methodology detailed in Section 2.2.2 to
the historical reanalysis, diagnosing TC origins as described, the NHC report of each
storm was reviewed to independently determine the official origins of every storm. For
the 420 events between 1979 and 2012, there were only 25 cases where the reanalysis-
derived dataset and the official reports disagreed on the origins of an individual TC.
This means there was 94% agreement between the experimental method and “objec-
tive” reality, as presented by the NHC TC Reports, for TC origins.

Of these 25 disagreements, there were a total of 14 cases where the report at-
tributed TC genesis to non-African origins, but the tracking methodology showed
some connection to an AEW. These cases are likely due to varying standards for de-
ciding whether an AEW was worth mentioning in the report, in cases such as when a
TC forms during a merger of a frontal system and an AEW. On the other hand, there
were 11 cases in which the report attributed storm genesis to an AEW, but evidence
of this was not present in the reanalysis. As mentioned in Section 2.3.1, it is possible
that some of these discrepancies could be due to NCEP-NCAR II’s low resolution.

The level of agreement does not seem sensitive to the temporal definition of the
hurricane season, with only 18 of the 322 events during August through October

between 1979 and 2012 showing disagreement, again for 94% agreement. This high
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degree of agreement lends credence to both the suitability of NCEP-NCAR II for
studying the relationship between AEWs and TCs, and to the tracking algorithm

itself.
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Chapter 3

Results: Historical Record of African
Easterly Wave Activity

As discussed in Sections 1.2.1 and 1.2.2, whether AEW count exhibits significant vari-
ation interannually has been debated, and the question of whether or to what extent
that variability might influence TC activity remains open. In order to legitimize Hi-
RAM for the purpose of studying AEW activity and variability, it is first necessary to
clarify the historical record. In this chapter, past studies of the interannual variability
of AEWs and TCs are revisited and compared (Section 3.1), then a new climatology
of AEW activity from historical reanalysis is constructed using novel methods and
compared with past studies (Section 3.2). Conclusions are drawn about the historical

relationship between AEW and TC count, and results are summarized (Section 3.3).

3.1 Revisiting Past Studies

Avila et al. (2000) and Thorncroft and Hodges (2001) are often cited, respectively,
in opposition to or in support of the notion that AEW activity and TC activity are
correlated interannually. In addition to these two influential works, another relevant
study is Hopsch et al. (2007), which used the technique developed in Thorncroft and

Hodges (2001) to revisit and extend the historical record of AEW activity, ultimately
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overturning the still-cited conclusion of the original work that AEW and TC count
are correlated interannually.

Since the original studies did release annual counts, but did not necessarily in-
clude relevant statistics to make sense of the counts (relying primarily on anecdotal
explanations and visual inspection), these counts are revisited and rigorous statistical
tests are performed here. First, each study is considered separately (Sections 3.1.1,
3.1.2, and 3.1.3), and then the studies are compared to each other (Section 3.1.4).
Since some of the arguments presented by the authors of the original studies were
dependent on timeframe and/or ENSO phase, these statistical tests are performed
on all years, all years after 1985, El Nino years only, La Nina years only, and neutral

ENSO years (see Appendix B for details of the ENSO classification).

3.1.1 Data Published by Avila et al. (2000)

Avila et al. (2000) published a table of Atlantic tropical statistics for the 31 years
between 1967 and 1997 (see their Table 1), including the number of waves, both the
total number and African number of tropical systems, broken down into the categories
of tropical depressions, tropical storms, and hurricanes, and the ratio of African to
non-African systems for each year (TCs were counted as “African” if they developed
from an AEW). Atlantic disturbances that emerged from the coast of Africa were
tracked manually using synoptic analysis and counts were totaled for the months
of May through November (MJJASON). The authors counted all systems that were
identifiable in wind, pressure, or cloud patterns for multiple days, with no attempt
to eliminate weaker systems.

In the original study, no explicit correlations were calculated and the idea that
AEW variability might have any relationship to TC variability was summarily dis-
missed, since “year-to-year variation in the total number of waves is probably not

significant because the process of identifying tropical waves has not been uniformly
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applied over the years” (Avila et al., 2000). While this potential inhomogeneity was a
reality in earlier works and should be taken into account, the methodology remained
fairly consistent throughout publications in which the tables were updated (Avila and
Clark, 1989; Avila and Pasch, 1992; Avila et al., 2000). For certain years in Avila
et al. (2000) as well as in earlier studies, narratives were constructed by the authors to
explain variance. For example, 1972, 1983, and 1997 were identified by the authors as
“strong El Nino years,” and also years in which there was an abnormally low number
of African tropical storms relative to the total number of tropical storms.

Although there was no statistical analysis performed in the original study, the
authors attributed much of the observed variability to ENSO variations, so when
computing correlation coefficients, the phase of ENSO is taken into consideration
(see Appendix B). The correlation coefficients between AEWs and tropical storms,
and AEWs and hurricanes were calculated from the historical counts published by
Avila et al. (2000) and are displayed in Figure 3.1. All years 1967-1997 are included
in the “All” category (31 years), all years after 1985 in the “Post-1985" category (13
years), only years in which ENSO was in its positive phase in the “El Nino” category
(9 years), only years in which ENSO was in the negative phase in the “La Nina”
category (7 years), and finally all years in which the ENSO index was not strongly
positive or negative in the “Neutral” category (21 years).

The statistical analysis suggests that ENSO phase may be a limiting factor in the
correlation between AEWs and tropical systems, although this is tempered by small
sample size. Considering all years together, all years post-1985, and El Nino years,
there is no correlation between AEW and TC activity. Correlation coefficients are
larger and skew positive for La Nina years, but this is not statistically significant.
Since there are only seven La Nina years in the historical record, it is impossible to
know if the lack of significance is due to the lack of a relationship, or simply small

sample size.
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Figure 3.1: Correlation between TC counts and AEW counts calculated from data
originally published by Avila et al. (2000). Includes Pearson’s correlation coefficients
(R-values) between annual (May through November) AEW counts and TC counts,
with error bars denoting the 95% confidence intervals. AEW counts are correlated
with both tropical storm counts (left) and hurricane counts (right) for all years (n=31,
1967-1997), all years post-1985 (n=13, 1985-1997), El Nifo years only (n=11), La
Nifla years only (n==8), and neutral ENSO years (n=12).

A potential dependence on ENSO phase would not be wholly surprising, since
El Nino years are characterized by hostile conditions in the MDR due to increased
shear, and previous authors have suggested that this may trump any effect from AEW
variability (see Section 1.2.2). Although there could be a difference in the relationship
between AEW and TC count according to ENSO phase, there is not enough evidence
to rule out the possibility that the average AEW count is the same regardless of
ENSO phase, with an average of 62.0 waves in La Nina years and 57.1 waves in El
Nino years (an unpaired Student’s t-test returns p = 0.11), compared with an overall
average of 60.7 waves per year. This lends some credence to the idea that “these
waves are very persistent” and “[maintain] their identity and westward progression in
spite of any hostile large-scale environment they might encounter” (Avila and Clark,

1989).
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Despite the statement to the contrary in the original study, it seems that the AEW
count in this dataset does exhibit interannual variability, with a standard deviation
of over 11% of the mean. While the statistical analysis performed here of the counts
published by Avila et al. (2000) suggests that AEW variability likely comes second
to large-scale favorability, it also hints that there may be a weak correlation between

AEW activity and TC activity in the absence of a strong El Nino.

3.1.2 Data Published by Thorncroft and Hodges (2001)

Although Thorncroft and Hodges (2001) are often cited in support of the claim that
AEW and TC interannual variability are correlated, the original analysis was based
on visual inspection and the quantitative correlations found in their data are weak at
best. Part of this may be due to the small sample size, since the study only considered
the 20 years from 1979 through 1998, but even the weak patterns found in these years
do not hold when the same counting techniques were later used to extend the record
(Hopsch et al., 2007). Potential reasons for this are discussed in Section 3.1.4, but
one possible explanation involves the importance of the seasonal cycle. Therefore, it
is important to note that Thorncroft and Hodges included systems from May through
October (MJJASO).

As mentioned in Section 2.2.2, this was the first study to attempt to track AEWs
using an automated system, tracing closed relative vorticity maxima that exceed a
threshold value, last for 2 of more days, and travel at least 10° zonally in ECMWF
reanalysis from 1979 to 1993 (Gibson, 1997) and ECMWF operational analyses be-
tween 1994 and 1998. Thorncroft and Hodges counted 850 mb waves in a box between
5°—~15°N and 10°-20°W using the tracker output, and these counts are plotted along
with named storm, hurricane, and intense hurricane counts for comparison in Figure
13 of the original study. The box was chosen because the authors found the southern

storm track to be the most relevant to TC development and the northern track to have
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comparatively little interannual variability. No statistical tests were performed in the
original study, but a “visual inspection” indicated that “from 1985 onward there [was]
a strong positive correlation” between AEW activity (850 mb wave counts) and TC
activity.

To test these conclusions, values were manually transcribed from the plot in Fig-
ure 13 of Thorncroft and Hodges (2001) for analysis. Years are again grouped as
described above in Section 3.1.1, to calculate correlation coefficients between AEW
count and tropical storm count totals, and AEW count and hurricane count totals
for the relevant months. Results are shown in Figure 3.2. All years 1979-1998 are
included in the “All” category (20 years), only years after 1985 in the “All Post-1985”
category (14 years), only years in which ENSO was in its positive phase in the “El
Nino” category (6 years), only years in which ENSO was in the negative phase in the
“La Nina” category (4 years), and finally all years in which the ENSO index was not
strongly positive or negative in the “Neutral” category (10 years).

The small sample size makes it difficult to draw conclusions about the potential
importance of the phase of ENSO in this dataset. The correlation coefficients in the
La Nina bin are virtually meaningless, since there were only 4 years included and the
confidence intervals are expansive. Although the reasons are unclear, the 1985-1998
correlation coefficients are significantly positive at the 95% confidence level, with
both tropical storm and hurricane counts correlated with AEW count. Otherwise,
there are no statistically significant correlations, and when revisited by Hopsch et al.
(2007), the difference between the pre- and post-1985 relationship vanishes. This is
discussed further in the next section.

The AEW count in this dataset exhibits strong interannual variability, with a
standard deviation of 29% of the mean. There is not enough evidence to rule out
the possibility that the average AEW count is the same regardless of ENSO phase,

with an average of 14.5 waves in La Nina years and 12.0 waves in El Nifio years (an
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Figure 3.2: Correlation between TC counts and AEW counts calculated from data
originally published by Thorncroft and Hodges (2001). Includes Pearson’s correlation
coefficients (R-values) between annual (May through October) AEW counts and TC
counts, with error bars denoting the 95% confidence intervals. AEW counts are
correlated with both tropical storm counts (left) and hurricane counts (right) for all
years (n=20, 1979-1998), all years post-1985 (n=14, 1985-1998), El Nino years only
(n=6), La Nina years only (n=4), and neutral ENSO years (n=10).

unpaired Student’s t-test returns p = 0.32), compared with an overall average of 12.3

waves per year.

3.1.3 Data Published by Hopsch et al. (2007)

Hopsch et al. (2007) applied the automated tracking technique from Thorncroft and
Hodges (2001) to July through October (JASO) data from ERA-40 (Uppala et al.,
2005), whereas the original study combined May through October data from an ear-
lier reanalysis (Gibson, 1997) with additional years from operational analysis. Like
Thorncroft and Hodges (2001), Hopsch et al. (2007) found that the southern storm
track is the most relevant for TC development and has significant seasonal and inter-
annual variability, but unlike Thorncroft and Hodges, Hopsch et al. found that AEW

counts were uncorrelated with TC activity interannually.
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Figure 3.3: Correlation between TC counts and AEW counts calculated from data
originally published by Hopsch et al. (2007). Includes Pearson’s correlation coef-
ficients (R-values) between annual (July through October) AEW counts and TC
counts, with error bars denoting the 95% confidence intervals. Correlations are shown
between TC and AEW counts (far left), TC counts and MDR AEW counts (center
left), MDR TC counts and AEW counts (center right), and MDR TC and MDR AEW
counts (far right) for all years (n=36, 1967-2002), all years post-1985 (n=18, 1985-
2002), El Nifo years only (n=12), La Nifia years only (n=11), and neutral ENSO
years (n=13).

To verify, values were manually transcribed from the plot in Figure 8 of Hopsch
et al. (2007) for further analysis. Years are grouped as in the previous sections, with
“All” encompassing the years 1967-2002 (36 years), “Post-1985” including 1985-2002
(18 years), “El Nino” including only strong positive ENSO phase years (12 years), “La
Nina” including only negative ENSO years (11 years), and finally “Neutral” including
the years with neither strongly positive nor strongly negative ENSO index (13 years).
Hopsch et al. provided not only the counts of AEWSs from the southern storm track
(using roughly the same box as Thorncroft and Hodges, 9°~18°N and 10°-20°W) and
TC counts, but also the number of TCs that formed in and the number of AEWs
that reached the MDR (defined as 10°-20°N and 20°-80°W).

The correlation coefficients calculated from the historical counts published by

Hopsch et al. (2007) are shown in Figure 3.3, including the correlation between the
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TC count and AEW count from Hopsch et al. (2007), the total TC count and the MDR
AEW count, the MDR TC count and the total AEW, and the MDR TC count and
the MDR AEW count. In contrast to Thorncroft and Hodges (2001) and Figure 3.2,
there is notably little difference between the AEW-TC relationships in the subset of
post-1985 years when compared to the full timeseries. Despite this being a follow-
up study to Thorncroft and Hodges (2001), Hopsch et al. (2007) did not have an

explanation for this discrepancy, remarking:

[W]e found that [the significant interannual AEW variability| is not sig-
nificantly correlated with Atlantic tropical cyclone activity. This disagrees
with the suggestion made by THOI [Thorncroft and Hodges, 2001], that
tropical cyclones may be weakly but positively correlated with the numbers
of storms. In fact, even the short period in THO1 where there appeared to
be a positive correlation (1985-98) is not reproduced in the present analy-
sis. The reasons for the differences are not easy to determine, although it
should be noted that THO1 used arguably a reanalysis product (ERA-15)
that is not as good as the one used in the current study [ERA-40], together
with operational analysis that included years where different assimilation
systems were used and the resolution progressively increased. The best cor-
relation with tropical cyclones in the THO1 study appeared to be exactly

when the operational analyses were used [four years, 1994-1998].

There is no significant correlation on an interannual scale in any of the com-
binations of TC and AEW counts shown in Figure 3.3. Hopsch et al. (2007) also
considered low-frequency variation (11-year running mean count) and argued for a
relationship, but the dataset is quite short to draw convincing conclusions from such
low-frequency and small amplitude variation. Furthermore, there is not a clear argu-

ment why one would expect a running average to be physically meaningful, as there
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is no evidence interannual count variation is not stochastic, and the choice of eleven
years is arbitrary.

Hopsch et al. (2007) also argue that seasonal variation in TC and AEW count
may be related, and further that AEW count may be more important than environ-
mental factors. While the TC and AEW counts do share similar seasonal cycles, their
argument that this is more important than the environment is flawed, as the authors

were mistaken on the effect shear has on environmental favorability, arguing:

In contrast [to the seasonal peak of AEW and TC count in September],
the tropospheric deep vertical shear shows no such peak in September sug-
gestive of the fact that seasonal variations in storm [AEW)] activity at the
height of the tropical cyclone season may be more important than seasonal

variations in the environment (measured in terms of shear).

In the accompanying figure (their Figure 7), the 200-850 mb shear shows a clear mini-
mum in September, which actually corresponds with mazimum favorability (measured
in terms of shear).

The AEW count in this dataset does exhibit strong interannual variability, with
a standard deviation of 21% of the mean for all AEWs, and 29% of the mean for
AEWs that make it to the MDR. There is no statistical difference between average
AEW count when binning by ENSO phase, with an average of 15.3 waves in La Nina
years and 15.1 waves in El Nifio years (an unpaired Student’s t-test returns p = 0.88),
compared with an overall average of 15.2 waves per year total. Considering only the
subset of waves that proceed to the MDR, there are an average of 9.6 waves in La
Nina years and 9.9 waves in El Nifio years (an unpaired Student’s t-test returns p
= 0.80), compared with an overall average of 10.1 waves annually between June and

October.
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3.1.4 Intercomparison of Past Studies

Since Avila et al. (2000), Thorncroft and Hodges (2001), and Hopsch et al. (2007)
each set out to produce a historical climatology of AEW count that is relevant for
comparison with annual TC counts, one might expect to find agreement in the inter-
annual variability of AEW activity reported by each study. Surprisingly, the AEW
counts from the 19 overlapping years of the two most-cited studies, Avila et al. (2000)
and Thorncroft and Hodges (2001), exhibit no statistically significant correlation with
each other, with a coefficient of determination of R? < 0.01. Perhaps this could be at-
tributed to differences in methodology, since the authors used very different methods
of enumerating AEW count. Yet despite Hopsch et al. (2007) having been a follow-up
study to Thorncroft and Hodges (2001) and using an almost identical methodology,
there is not a significant correlation in AEW counts across these two studies during
the 20 overlapping years either, with a coefficient of determination of R? = 0.03.

Regardless of the original conclusions drawn by the authors, the data from Avila
et al. (2000) does exhibit interannual variability and may hint at a weak connection
between AEW activity and TC activity in the absence of a strong El Nino, despite
no apparent statistically significant change in average AEW count with ENSO phase.
Since this dependence of the AEW-TC relationship on ENSO phase is not present
in other studies, it may be due to the peculiarities of the specific methodology the
authors employed. The relationships uncovered in the statistical analysis are weak,
with any potential signal likely masked by two methodological choices. Specifically,
the authors: 1) counted anything remotely resembling an AEW, so weak systems and
simultaneous twin vortices may have been overrepresented, and 2) defined the season
of interest very broadly, as May 1 through November 30 (MJJASON).

On the other hand, Thorncroft and Hodges (2001) claimed to have uncovered
a historical correlation between AEW count and TC count, especially for the short
time period from 1985 through 1998. While the reported correlation was based on
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visual inspection and the study wanted for quantitative statistics, there is indeed
a statistically significant positive correlation present between the 1985-1998 AEW
and TC counts from the original study. The authors did not suggest any physical
explanation for the reported shift in the AEW-TC relationship after 1985, and the
follow-up study from Hopsch et al. (2007) found that this post-1985 correlation is
not actually reproducible, in that it is not present in an extended historical record
created using similar methodology. However, the historical AEW records set forth
by both Thorncroft and Hodges (2001) and Hopsch et al. (2007) do indeed exhibit
marked interannual variability, stronger than that of Avila et al. (2000).

The drastically different average count yielded by each study is another symptom
of the inconsistencies in the methodologies used. Where Avila et al. (2000) may
have erred on the side of over-counting disturbances, Thorncroft and Hodges (2001)
and Hopsch et al. (2007) systematically excluded certain waves, specifically those
propagating along the AEJy and those lacking a closed vorticity contour, resulting in
significantly lower AEW counts. Avila et al. (2000) found an average of 60.7 AEWs
each year, compared with 12.3 for Thorncroft and Hodges (2001) and 15.2 for Hopsch
et al. (2007). Avila et al. (2000) used manual synoptic analysis to count all AEWs
for the months of May through November, while Thorncroft and Hodges (2001) and
Hopsch et al. (2007) only considered AEWSs identified by an automated tracker in a
10° x 10° box that was designed to count AEWs propagating along the AEJg, for the
months of May through October and July through October, respectively.

Despite Hopsch et al. (2007) totaling AEW counts for fewer months than Thorn-
croft and Hodges (2001) (JASO versus MJJASO), the former study reported higher
average counts than the latter. While Hopsch et al. (2007) suggest that differences
in AEW-TC correlations may be attributable to the difference in reanalysis products
used between the two studies, and this argument could be extended to the differences

in counts, the discrepancy in average count could also be due to their repositioning of

73



the AEW domain of interest from Thorncroft and Hodges (2001) or due to differences
in the range of dates averaged (1967-2002 versus 1979-1998).

Along with the counting method, the variability of “total count” of AEWSs is
likely sensitive to the seasonal timeframe considered. Unfortunately, the past works
discussed here did not provide monthly breakdowns of the AEW counts annually, so
it is impossible to determine the relative importance of the differences in counting
methodologies versus definitions of AEW seasons. Hopsch et al. (2007) found that
AEWSs seem to be more likely to develop into TCs in August and September, with
roughly 40% of waves developing, compared to 0%, 12%, and 15% in June, July, and
October. That, coupled with the fact that there tend to be many AEWSs before the
hurricane season begins in earnest, means the seasonal cycle is an important factor
to consider when studying the relationship between AEWs and TCs.

Figure 3.4 shows a detailed comparison of the interannual variability of the AEW
counts of the three different studies, including cross-study correlation coefficients and
95% confidence intervals, broken into the same categories for which each study’s
AEW counts were compared to TC counts in Figures 3.1, 3.2, and 3.3. There is
no statistically significant correlation for AEW count between any of the three past
studies detailed above, regardless of the timeframe or ENSO phase considered. This
is likely due to the differences in counting methodology mentioned above.

Since there is no agreement between any of the major past works that examined
AEW variability in order to test for correlation with interannual TC variability, either
on the AEW historical record itself or on the conclusions drawn about the relationship
between AEWs and TCs, it is necessary to establish a baseline historical record
of AEW activity using reanalysis before moving on to analyze model results. To
address this deficiency in the literature, the historical record produced by applying
the methodology discussed in Section 2.2.2 to NCEP-NCAR II reanalysis data is

presented in the next section.
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Figure 3.4: Correlation of AEW counts across studies, calculated from data originally
published by Avila et al. (2000), Thorncroft and Hodges (2001), and Hopsch et al.
(2007). Includes Pearson’s correlation coefficients (R-values) between the annual
AEW counts of each study, with error bars denoting the 95% confidence intervals.
Total AEW counts for overlapping years are correlated between Avila et al. (2000)
and Thorncroft and Hodges (2001) (left), Thorncroft and Hodges (2001) and Hopsch
et al. (2007) (center), and Avila et al. (2000) and Hopsch et al. (2007) (right), for all
overlapping years, all overlapping years post-1985, overlapping El Nino years only,
overlapping La Nina years only, and overlapping neutral ENSO years.

3.2 Establishing Historical AEW Activity Using
Reanalysis

The results of applying novel tracking techniques (described in Section 2.2.2) to
NCEP-NCAR II reanalysis (described in Section 2.1.1) are presented here, produc-
ing a new climatological record of AEW activity from 1979 through 2012 to address
the shortcomings of past studies (described in Section 3.1.4). Several aspects of this
new historical record of AEW activity are detailed and compared with past studies
where appropriate, including the seasonal cycles of AEW and TC count statistics
(Section 3.2.1), the power spectrum and statistical measures of AEW activity (Sec-

tion 3.2.2), and the interannual variability of AEW and TC count statistics and
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potential correlations (Section 3.2.3). Finally, a multiple linear regression model of

TC count is considered (Section 3.2.4).

3.2.1 Seasonal Cycle of Count Statistics

Few past studies of AEWs have reported AEW counts separately by month, but most
studies that consider seasonal cycle agree that peak AEW activity typically occurs in
August or September. In tracking closed vorticity contours, Thorncroft and Hodges
(2001) found a strong peak in seasonal AEW activity in August at the 600 mb level,
and in September at the 850 mb level. Using composite spectral analysis to perform
a global analysis of OLR, Frank and Roundy (2006) found that tropical cyclones and
AEWSs have similar seasonal cycles. When Hopsch et al. (2007) analyzed 2- to 6-day
filtered 850 mb meridional wind variance from reanalysis, AEW activity was elevated
from July through October. Similarly, Agudelo et al. (2011) found that about 35%
of the annual AEW activity occurred in the months of July through September, with
peak activity in August.

As explained in Section 2.2.2, the present tracking methodology produces monthly
counts of AEWSs, developing AEWs, TCs, and African TCs. These monthly counts
are averaged over all of the years of the reanalysis (1979-2012) and are plotted in
Figure 3.5, along with 95% confidence intervals. The seasonal cycle of AEWs (Fig-
ure 3.5a) shows good agreement with past studies (Thorncroft and Hodges, 2001;
Frank and Roundy, 2006; Hopsch et al., 2007; Agudelo et al., 2011), with AEW
activity elevated July through October and peaking in August.

Although there are more AEWSs in July than in October (see Figure 3.5a), rel-
atively few of them mature into TCs, compared to the months of August through
October (see Figure 3.5¢). The environment becomes more favorable and hurricane
season picks up somewhat abruptly in August (see Figure 3.5b), with August through
October showing the most elevated TC activity on average. Because the focus of this
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study is to compare AEW and TC variability, it is reasonable to select the months
in which both AEW and TC activity are elevated for consideration. For this reason,
total August through October (ASO) counts are subsequently referred to as “annual

counts,” unless otherwise specified.

3.2.2 Power Spectrum and AEW Statistical Measures

The statistical techniques discussed in Section 2.3.3 and used to validate the AEW
counting methodology across all simulations were applied to the NCEP-NCAR II
reanalysis data to produce a normalized power spectrum of 1-10 day band-pass filtered
850 mb meridional winds, averaged between 10°N and 20°N near the coast of Africa,
from six-hourly data between August 1 and October 31, averaged for the years 1979-
2012 (see Figure 3.6). The general shape of this spectrum compares favorably with
similar spectral representations of AEWSs from past studies (Albignat and Reed, 1980;
Lau and Lau, 1990; Thorncroft and Rowell, 1998), with a period of maximum power
of 3.4 days, a spectral centroid of 3.4 days, and 55% of the power located in the 3-5
day band. This provides further evidence that NCEP-NCAR II adequately captures
AEW variability (see also Section 2.3.1) and is an objective check on the reasonability
of the manual measure of AEW activity. This power spectrum is revisited in more

detail in Section 4.2, in comparison with model-derived spectra.

3.2.3 Interannual Variability of Count Statistics

This section begins with a comparison of the interannual variability of AEW activity
in the present study with that reported by Avila et al. (2000), Thorncroft and Hodges
(2001), and Hopsch et al. (2007), and a discussion of the features that distinguish the
present study from the existing literature. Once this context has been established,

the dataset produced using the manual-automated tracking technique is examined
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Figure 3.6: Normalized power spectrum of 1-10 day band-pass filtered meridional
wind at 850mb, averaged between 10°N and 20°N, at the coast of Africa (15°W), for
August 1 through October 31, averaged for 1972-2012 for NCEP-NCAR II reanalysis.
The 3-5 day band is highlighted in cyan.

further, with a focus on the relationship between AEW activity and TC activity on
seasonal timescales.

To compare the present annual count statistics with count statistics from the
past studies discussed in Section 3.1 interannually, AEW counts were totaled for the
months that overlap with each study and then correlation coefficients were calculated
between these “annual counts” from the NCEP-NCAR II reanalysis and each of the
past studies. It is worth noting that the definition of the season does not seem to have
an extreme effect on the interannual variability of AEW count in the current study
(this is discussed further below), but months were matched as closely as possible
when comparing with each past study to minimize confounding variables. Although
some past studies have included AEWSs from May in their total seasonal counts, the
current methodology only provides counts for June through November, since May
is not technically part of hurricane season. Ultimately, the June through November
NCEP-NCAR II counts were compared with the May through November counts from

Avila et al. (2000), June though October with the May through October counts from
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Figure 3.7: Correlation of AEW counts between the present study and past stud-
ies, calculated using data originally published by Avila et al. (2000), Thorncroft and
Hodges (2001), and Hopsch et al. (2007). Includes Pearson’s correlation coefficients
(R-values) between the annual AEW counts of each study, with error bars denoting
the 95% confidence intervals. Total AEW counts established in this study are cor-
related with Avila et al. (2000) (left), Thorncroft and Hodges (2001) (center), and
Hopsch et al. (2007) (right), for all overlapping years, all overlapping years post-1985,
overlapping El Nino years only, overlapping La Nina years only, and overlapping
neutral ENSO years.

Thorncroft and Hodges (2001), and July through October with the corresponding
counts from Hopsch et al. (2007).

No statistically significant correlation for AEW count between the present study
and any of the three past studies was found, regardless of the timeframe or ENSO
phase considered, as shown in Figure 3.7. This lack of agreement with past studies
might be worrisome, except for the fact that none of the past studies agree with each
other (recall Figure 3.4). It is impossible to make a value judgment on the accuracy
of the current study based on its lack of agreement with irreconcilable past studies.
Some possibilities are briefly discussed in Section 3.1.4, but without more details of
the past studies than are publicly available, it is impossible to determine precisely

why they differ from each other, or from the current study.
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There are several relevant differences between the methodology used here and the
methodology of past studies, including differences in the types of waves counted and
the choice of months examined, which conceivably make the present dataset more
compelling and relevant for addressing the problem at hand. As described in Sec-
tion 2.2.2, the methodology used in this study was designed to target and count
relevant AEWs, i.e., capturing signatures of strong waves propagating along both
the AEJy and AEJg, without double-counting “simultaneous twin vortices” (Fink
et al., 2004), and only counting waves that originated in Africa and make it to the
MDR, giving these waves a chance to develop into TCs. While Avila et al. (2000)
counted every Atlantic wave, perhaps double-counting “simultaneous twin vortices”
and including weak transient systems in the process, Thorncroft and Hodges (2001)
and Hopsch et al. (2007) systematically excluded certain waves, not only intentionally
excluding waves propagating along the AEJy, but perhaps unintentionally excluding
those that did not have a closed vorticity contour. These methodological differences
are manifest in the very different annual counts for each study. Correcting for the
number of months considered, the number of AEWs counted annually using the cur-
rent methodology is significantly greater than for Thorncroft and Hodges (2001) and
Hopsch et al. (2007), but is significantly fewer than for Avila et al. (2000).

As argued in Section 3.2.1, since the focus of this study is comparing AEW and
TC variability, it is reasonable to consider only months in which both AEW and
TC activity are elevated. This intentional choice means there is a better chance of
locating a signal within the noise and determining if there is a relationship between
AEWSs and TCs, as AEW variability in months during which there are few or no TCs
is less likely to have an impact on TC variability. On the other hand, both Avila
et al. (2000) and Thorncroft and Hodges (2001) defined their season of interest very
broadly, as MJJASON and MJJASO, respectively. Since the intercomparison of past

studies in Section 3.1.4 indicated that there might be sensitivity to the definition of a
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Figure 3.8: Correlation between TC counts and AEW counts from present study.
Includes Pearson’s correlation coefficients (R-values) between annual (defined two
different ways) AEW counts and TC counts, with error bars denoting the 95% con-
fidence intervals. TC and AEW counts are totaled for the months of June through
November (JJASON, left) and August through October (ASO, right) and correlated
for all years (n=34, 1979-2012), all years post-1985 (n=28, 1985-2012), El Nino years
only (n=10), La Nina years only (n=9), and neutral ENSO years (n=15).

season, the AEW and TC counts produced using the current methodology as applied
to NCEP-NCAR 1II are first correlated interannually for both the entire hurricane
season (June 1 through November 31) and for the peak months of activity (August
1 through October 31), broken into the same categories for which past studies were
examined and compared and shown in Figure 3.8.

While the correlations are unsurprisingly stronger for the months of elevated AEW
and TC activity (ASO), even the seasonal totals (JJASON) of AEW and TC count
show statistically significant positive correlation interannually in Figure 3.8. While
the signal is stronger when isolating the months of elevated activity, the interannually
variability does not seem strongly dependent on the definition of the season in the

present study. This may or may not hold true in past studies, but does suggest that
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Figure 3.9: Scatterplot of annual total TC count versus AEW count for the months
of August through October (ASO), as determined from NCEP-NCAR II reanalysis
and IBTrACS. Each point is color-coded by the ENSO phase of the year, with El
Nino years in red, La Nina years in blue, and neutral ENSO years in yellow.

the differences in counting methodology may be more important than the differences
in the months considered when comparing studies. As in past studies, the AEW count
in this newly-derived historical dataset does exhibit strong interannual variability,
with a standard deviation of 18% of the mean, regardless of the definition of season
(JJASON, JJASO, JASO, or ASO).

Figure 3.9 shows a scatterplot of annual (ASO) TC count versus AEW count for
all years in the present reanalysis-derived historical record, with El Nino years plotted
as red triangles, La Nina years as blue triangles, and neutral ENSO years as yellow
diamonds (see Appendix B for definitions of the ENSO classifications). Contrary
to the conclusion suggested in the analysis of the data from Avila et al. (2000) in

Section 3.1.1, that correlation might be stronger in the absence of a strong El Nino,
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the relationship between AEW count and TC count appears weaker in La Nina years
than in El Nifio years (see Figure 3.8 for correlation coefficients). This is likely an
artifact of small sample size and is not conclusive, with only 9 La Nina years in the
dataset. The importance of ENSO phase is revisited throughout this dissertation,

particularly in Sections 3.2.4, 4.5, and 5.3.

3.2.4 Multiple Linear Regression Models of TC Count

As shown in Figure 3.8 of Section 3.2.3, there is a significant interannual correlation
between annual (ASO) AEW count and TC count, with a 95% confidence interval of
0.569 < R < 0.874 (R? = 0.57, p = 1.8 x 1077). Another way of expressing this result
is that the measured AEW variability explains 57% of the variance in TC count. This
is a significant result itself, providing the first quantitative evidence supporting the
conclusions suggested by Thorncroft and Hodges (2001).

One could argue that this correlation is not causal and is instead mediated by
external factors, and that perhaps AEW variability does not play an active role in
influencing TC activity, but rather the AEW and TC counts are controlled by the
same large-scale environmental factors. As suggested by Avila et al. (2000), changes
in AEW activity could simply reflect changes in the phase of ENSO. To address
this concern, stepwise linear models of TC count are constructed, using ENSO index
(see Appendix B for details), AEW count, and the year as the set of predictors for
multiple linear regression models. These three potential predictors were each tested
separately, as well as in various combinations, producing the adjusted coefficients
of determination and associated p-values shown below in Table 3.1. In this table,
notation of the form y ~ 1 + x1 + x5 + x3, where y is the predictand and z; are
predictors, is shorthand for the multiple linear regression model y = Cy 4+ Cixy +

Cshx9 + Csx3, where C; are constants.
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Table 3.1: Multiple Linear Regression of Historical TC Counts (1979-2012)

Linear Model Adjusted R? | p-value
TC ~ 1+ AEW 0.566 1.8 x 1077
TC ~ 1 + year 0.321 2.8 x 107*
TC ~ 1 + ENSO 0.233 2.3 x 1073
TC ~ 1 + year + ENSO 0.516 4.9 x 1076
TC ~ 1 + year + ENSO + AEW 0.712 7.1 x 107

The year, ENSO index, and AEW count each shows significant skill over a con-
stant model in explaining TC count. As shown in Table 3.1, there is a statistically
significant trend in the TC count data (R? = 0.321, p = 2.8 x 107%), associated with
an average slope of 0.23 additional TCs each year, which may be associated with
the tendency for negative Atlantic Meridional Mode states prior to 1995 and positive
thereafter (Kossin and Vimont, 2007). Of AEW count, year, and ENSO phase, AEW
count explains the highest percentage of variance in TC count, and each individually
explains 57%, 32%, and 23%, respectively. Together, year and ENSO index account
for 52% of the variance in TC count (R? = 0.516, p = 4.9 x 1079), but the addition of
AEW count increases this to over 71% (R? = 0.712, p = 7.1 x 107%). The p-value to
accept AEW count as an additional predictor in the stepwise model is p = 0.000053,
which demonstrates that it provides a statistically significant improvement over year
and ENSO index alone.

Notably, there is no statistically significant covariance between AEW count and
ENSO index (R? = 0.079, p = 0.11). There is a weak but statistically significant
trend evident in AEW count, i.e., AEW count increases with time, with a slope of
an average of 0.13 additional AEWs per year (R? = 0.239, p = 0.0033). This is
worth noting, but since the AEW count was derived from reanalysis, as mentioned
in Section 2.1.1, trends cannot be trusted at face value, due to discontinuities in
assimilated observational data. (The trend in TC count, on the other hand, was not
derived from the reanalysis, and therefore represents the ostensibly real trend present

in IBTRaCS).
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Finally, to estimate the contribution of AEW count to TC count variability beyond
what is explained by ENSO phase and annual trends, both AEW count and TC
count are detrended by ENSO phase and year, and the residuals are then correlated.
Correlating these AEW and TC residuals yields a statistically significant relationship,
with a 95% confidence interval of 0.368 < R < 0.797 (R? = 0.395; p = 7.0 x 107°). In
other words, even when the effects of ENSO phase and annual trends are removed,
AEW variability still explains approximately 40% of TC interannual variability. From
this analysis, it is clear that AEW count provides skill above and beyond the large-

scale conditions encapsulated in the ENSO index.

3.3 Summary and Discussion

While past studies have attempted to determine whether or not AEW and TC activity
are correlated on interannual timescales, the methodologies employed have varied
widely, resulting in inconsistent results. These inconsistencies have exacerbated the
lack of consensus in the field, not only in terms of the relationship between AEWSs
and TCs, but of the characteristics of the historical AEW record itself. In an attempt
to reconcile seemingly contradictory results, the climatological AEW count records
published by Avila et al. (2000), Thorncroft and Hodges (2001), and Hopsch et al.
(2007) were revisited, analyzed quantitatively, and compared in this chapter.

To address the deficiencies found in the literature, a historical record of AEW
activity produced using a novel tracking technique was then compared to these past
studies, described, and analyzed. Although it is impossible to determine the precise
reasons for the discrepancies between the AEW historical record as produced in past
and present studies without more details than are publicly available, some possible ex-
planations were provided, and it was argued that the present dataset is more relevant

and reliable for addressing the historical relationship between AEW and TC count.
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Finally, conclusions were drawn about the relationship between AEW and TC activity
using the updated historical record of AEW count. The findings about the historical
AEW record produced by past studies and the context into which the present study
fits, as well as the relationships between AEW and TC activity uncovered within the
new historical record described here, are summarized below.

None of the AEW counts produced by any of the past studies examined (Avila
et al., 2000; Thorncroft and Hodges, 2001; Hopsch et al., 2007) show any cross-study
interannual correlation for overlapping years, regardless of the timeframe or ENSO
phase considered. Since none of the past studies agree with each other on either
AEW average count or interannual variability, it is impossible to use these studies
to assess the accuracy of the current study, which in turn does not corroborate the
annual AEW count or interannual AEW variability of any of the past studies. That
said, there is good agreement between the seasonal cycle and spectral statistics of the
present historical record with past studies (Albignat and Reed, 1980; Lau and Lau,
1990; Thorncroft and Rowell, 1998; Thorncroft and Hodges, 2001; Frank and Roundy,
2006; Hopsch et al., 2007; Agudelo et al., 2011). Since the present methodology
accurately captures the seasonal cycle of AEWs while making provisions to count
the most relevant waves over the most relevant months, there is cause to believe the
historical record produced in the present study better describes the relevant variability
of AEWs.

Although Hopsch et al. (2007) suggested that their counting methodology is sen-
sitive to the choice of reanalysis/analysis product used, and that higher resolution
reanalyses might be necessary to produce a reliable historical record of AEW activ-
ity, these potential limitations do not seem to be significant for the novel tracking
techniques used here (recall Section 2.3.1). This may be attributable to methodolog-
ical improvements that make the present dataset more robust for the purposes of

addressing AEW variability and its relationship with TC variability on interannual
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timescales. Since the present methodology includes provisions to track all strong
AEWs, while avoiding double-counting simultaneous twin vortices and excluding sys-
tems that dissipate before reaching the MDR, the AEWSs counted in this study are
likely those that are most relevant to TC development.

Since Avila et al. (2000), Thorncroft and Hodges (2001), and Hopsch et al. (2007)
did not provide monthly counts and there is some suggestion that the differences in
their definitions of the AEW season of interest could have affected the transparency
of any potential AEW-TC relationship present in their data, AEW and TC counts
produced using the current methodology and the relationships therein were considered
for both the entire hurricane season (JJASON) and the peak months of AEW and TC
activity (ASO). In the present study, the correlations between AEW and TC count
are stronger between ASO totals than JJASON totals, but both seasonal definitions
result in statistically significant positive correlations interannually. This suggests that
differences in counting methodologies between past studies might be more important
than differences in the definition of the season. Although the interannual variability
does not seem strongly dependent on the definition of season in the context of the
present study, it makes sense to focus on the months for which both AEW and TC
activity are elevated (ASO), during which there is a better chance of detecting a
signal over the noise.

There is indeed a significant interannual correlation between annual (ASO) AEW
count and TC count in the present historical data, in which AEW count variability
ostensibly explains 57% of the variance in TC count. While Thorncroft and Hodges
(2001) were the first to suggest such a linkage, this is the first rigorous quantitative ev-
idence in support of this relationship. This strong correlation itself does not preclude
the possibility that AEW and TC count are simply controlled by the same large-scale
environmental factors. To address this concern, multiple linear regression was used

to evaluate the relative importance of ENSO phase, annual trends, and AEW count
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in stepwise linear models of TC count. AEW count was shown to provide significant
skill over ENSO index and annual trends, both alone and together. When detrending
AEW and TC count for ENSO index and annual trend, there is a statistically signifi-
cant correlation between the residual AEW and TC counts. Effectively removing the
impacts of ENSO phase and annual trend, AEW count still explains 40% of the TC
interannual variability.

While it is clear that AEW count provides information on TC count apart from
the large-scale conditions, there is more work to be done unpacking the potential
importance of ENSO phase in modulating the relationship between AEW and TC
variability. The relationship between AEWs and TCs in La Nina years is of especial
interest, since there are hints of a potential dependence on ENSO phase that cannot be
adequately resolved due to small sample size. To strengthen the conclusions drawn
here and strengthen the case for a causal link between AEW and TC activity, it
is necessary to isolate and study the importance of interannual variability in the
favorability of the large-scale environment. These topics are addressed through model
simulations in Chapter 5, once the model is compared against the historical record in

Chapter 4.
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Chapter 4

Results: Comparing HiIRAM to the
Historical Record

The methodological techniques outlined in Section 2.2.2 have been used to produce an
updated historical record of AEW variability from NCEP-NCAR II reanalysis (Kana-
mitsu et al., 2002), which is described in detail in Chapter 3. The same techniques
are applied to the climatological suite of HIRAM simulations in this chapter in order
to compare the model-produced AEW activity to that of the reanalysis. This suite
of climatological simulations consists of three ensemble members (H1, H2, and H3),
each forced with observed seasonally and annually varying SSTs (Rayner et al., 2003)
for the period from 1982 through 2009 (see Section 2.1 for more details). HIRAM has
already been shown to reliably reproduce tropical storm statistics through past stud-
ies (see Section 1.2.3), so the main focus of this chapter is on demonstrating that the
model adequately captures AEWs through comparison with the reanalysis-derived
historical AEW record.

First, the modeled seasonal cycle of AEW and TC count statistics (Section 4.1)
and statistical measures of AEW activity (Section 4.2) are examined and compared
with the historical record. Since the results of Chapter 3 indicate that the large-scale
environment likely plays some role in the relationship between AEW and TC vari-
ability, the large-scale environmental factors, including the GPI of the Atlantic basin

and the strength of the AEJ, are examined in Section 4.3. Finally, the interannual
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variability of AEW and TC count statistics (Section 4.4) and the connections between
environmental factors, AEW activity, and TC activity (Section 4.5) are considered
and compared with the reanalysis-derived historical record. The chapter closes with
a summary of the reliability of the climatological simulations, and by extension, the

validity of using HIRAM to study AEW and TC variability.

4.1 Seasonal Cycle of Count Statistics

The tracking methodology produces monthly counts of AEWs, developing AEWs,
TCs, and African TCs (see Section 2.2.2), which are averaged over all of the years of
the reanalysis (1979-2012) and over the years of interest in each of the climatological
simulations (1982-2009). These average monthly counts are plotted in Figure 4.1,
along with 95% confidence intervals. The climatological simulations are largely con-
sistent with past studies of the AEW seasonal cycle (Thorncroft and Hodges, 2001;
Frank and Roundy, 2006; Hopsch et al., 2007; Agudelo et al., 2011), with elevated
AEW activity in the months of July through October, and show reasonable agreement
with the reanalysis-derived historical record (see Section 3.2.1). The arguments made
above in Section 3.2.1 concerning the months of interest still apply here. Namely,
although there are more AEWSs in July than in October (see Figure 4.1a), relatively
few of them mature into TCs when compared to the months of August through Oc-
tober (see Figure 4.1c). As in Chapter 3, total counts for August through October
(ASO) are hereafter referred to as “annual counts.”

While the historical records derived from NCEP-NCAR II and the climatologi-
cal simulation ensemble members may have slightly different seasonal cycles, with
less of a distinct peak in AEW activity in August and stronger activity persisting
through to October in the model-derived statistics (see Figure 4.1a and 4.1c), it is

clear that the model captures the overlap in the peak AEW months and the peak TC
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Figure 4.2: August through October average counts for African easterly waves
(AEW), developing African easterly waves (AEW-TC), African tropical storms (TC-
AEW), and all tropical storms (TC) for the historical record (gray) determined from
NCEP-NCAR II reanalysis and IBTrACS, and each ensemble member of the clima-
tological suite of HIRAM simulations (H1 in blue, H2 in red, and H3 in green). Error
bars denote 95% confidence intervals.

months (see Figure 4.1a and 4.1b). Although there is some variation in peak month
between ensemble members, monthly AEW counts consistently peak earlier than TC
counts. Both AEW and TC counts are near their respective maxima in the late sum-
mer, from August through October (see Figure 4.1a and 4.1b), and this overlap is
reflected in the monthly counts of developing AEWs (Figure 4.1c) and African TCs
(Figure 4.1d). Note that the differences in Figures 4.1c and 4.1d arise due to the
counting methodology, detailed in Section 2.2.2.

Despite some slight differences in the seasonal cycle between the reanalysis-derived
and the modeled historical records, there is excellent agreement in annual total (ASO)
count in all categories, including AEW count, developing AEW count, African TC
count, and TC count (see Figure 4.2). This is evident from the overlapping 95% con-
fidence intervals (see error bars in Figure 4.2), and also holds up in rigorous statistical
testing. A Student’s paired t-test returns p-values ranging from 0.29 to 0.96 when
comparing the counts from the overlapping years of NCEP-NCAR II with each of the
HiRAM ensemble members, indicating that there is no statistically significant dif-
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ference between the reanalysis-derived average annual counts and the model-derived

annual counts.

4.2 Power Spectra and AEW Statistical Measures

For comparison with Section 3.2.2, the statistical techniques discussed in Section 2.3.3
were applied to each ensemble member to produce power spectra of 1-10 day band-pass
filtered 850 mb meridional winds, averaged between 10°N and 20°N near the coast of
Africa, from six-hourly data between August 1 and October 31, averaged for the years
1982-2009. Figure 4.3 shows these raw spectra for the NCEP-NCAR II reanalysis
and for the climatological ensemble members, with the 3-5 day band highlighted in
cyan. The general shape of these spectra compares favorably with similar spectral
representations of AEWSs from past studies (Albignat and Reed, 1980; Lau and Lau,
1990; Thorncroft and Rowell, 1998), but note that the reanalysis-derived spectrum is
more muted than the modeled spectra (see Figure 4.3a).

NCEP-NCAR II has less total power in the 1-10 day range in comparison with
the climatological simulations, possibly due to differences in resolution. When nor-
malizing by total power in the 1-10 day band, the spectra for the climatological
ensemble members compare favorably with the NCEP-NCAR II spectrum by visual
inspection (see Figure 4.4). This normalization does not affect the calculation of the
centroid or the percent power in the 3-5 day band. There is some variation between
the ensemble members, with the centroid ranging from 3.62 to 3.69 days, and the
percent power ranging from 58.6% to 60.5%. These values are reasonably similar
to the reanalysis-derived spectral statistics, for which the centroid is 3.41 days and
54.9% of the power is in the 3-5 day band. As suggested in Section 2.3.1, it would be

interesting to produce a more detailed intercomparison of representations of AEWs
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in various reanalyses, including the spectral representations, but this is left for future

work.

4.3 Large-Scale Environmental Factors

While the climatological plots of NCEP-NCAR II fields do not necessarily represent
reality and are likely flawed themselves, they are used as a baseline for comparison
with the HIRAM climatological simulations here. Again, while it would be interest-
ing to compare the relevant fields and measures of environmental favorability across
various reanalyses, it is beyond the scope of this work. All climatological HIRAM
plots in this section are derived from 30-year climatological fields (1979-2008), and
NCEP-NCAR II plots are 34-year climatologies (1979-2012). All plots shown are an-
nual (ASO) averages, including the 600 mb zonal wind, the precipitation rate, and
the genesis potential index discussed below.

Figure 4.5 shows the zonal wind field at the level of the jet core (600 mb) for
the reanalysis (a) and each of the climatological ensemble members (b-d). While
there is some intra-ensemble variance, there is good agreement between the ensemble
members on the approximate magnitude and location of the AEJ, which is about
9-10 m s~ ! at its maximum around 15°N over Africa. The structure and magnitude
of the zonal wind compare favorably with past studies that have included plots of
zonal wind over Africa (Burpee, 1972; Cook, 1999; Leroux and Hall, 2009).

The NCEP-NCAR II jet core is marginally weaker and further south (see Fig-
ure 4.5), but the overall structure of the zonal wind is qualitatively similar to that of
the model-derived fields. These plots also compare well with Figure 1 of Cook (1999),
which includes average July zonal wind over Africa for both NCEP and EMCWF re-
analyses, plotted at the respective level of the AEJ maximum. Cook (1999) provides

an example of the degree of variation that can be observed in different reanalyses,

96



"weADd Ul pojySIUSIY ore spueq Aep ¢-¢ oy, "¢H (P) pue ‘H (9) ‘TH () ‘sunt ppou
[eo13010)RWI[D o1} 10] pue ‘sisAeural [ YYON-dADN (®) 10} ‘T¢ 10q030() ysnory) T 9snsny 10 ‘(A ,GT) BOLIY JO 1SR0D oY) e
‘N0 PUR N (T Uoomidq pogelose ‘qUI()GR }e PUIM [RUOIPLIOW pato}[ly ssed-pueq Aep ()1-T Jo vi1joads 1omod pozijeurioN :§'§ oInsig

{Aep 1ad s312A2) Aouanbaly (Aep 12d sa)0A2) Aauanbald
0 €0 (A T0 70 €0 ¢0 T0
— : 0 — , 0
T '
'z C
7 @ 7 @
S 'S
9 9
_ — _ _ L — _ , L
(A)u] s (a)da (a)u] s (a)da
¢H (p) ¢H (0)
(Aep 1ad sa|2A2) Aouanbai4 (Aep 1ad sa|2A2) Aouanbai4
0 €0 ¢0 T'0 70 €0 ¢0 T'0
— , 0 — , 0
' '
-z -z
€ g € g
= 3
7 @ 7 @
'S 'S
9 9
—— _ , L — _ , L
(a)u] s (a)da (a)u] s (a)da

TH (q) I YVON-dADN (®)

97



-

S W T SI [RAIDJUL INOJUOD O} PUR ‘SPUIM AJID}SOM 9)RITPUIL SINOJUOD PI[OS ‘SPUIM A[I9)SRO

9JBIIPUI SINOJUOD Payse(J "I10q03d() QWSOMQ@ uwﬁ@5< JO sgjuona oy} 10§ U@M@M@\w@ pO—E 009 %e purm [euoZ ﬁmoﬁwoﬁopﬁaﬂo N e @.Hﬂwﬁ,m

JANUSNGT

[~ NS

S S YR

i -

- NagE

3ANLILYT

3ANLIYT

JANUSNGT

[~ M52

e g

NGt

3ANLILYT

 NagE

- 02

I Y )

3ANLIYT

[~ No0T

= NaO¥

1T YVON-dADN (®)

98



strengthening the argument that, despite differences between the NCEP-NCAR II
and the HIRAM zonal winds, the AEJ is adequately captured by the model.

The average precipitation rate is shown in Figure 4.6 to give some indication of
the strength and location of the ITCZ. The ITCZ may be relevant to the relation-
ship between the AEJ, AEW activity, and TC activity, as suggested by Nicholson
and Grist (2001) and Hsieh and Cook (2005), and this potential relationship is dis-
cussed in Chapter 6. The primary rainfall core is located off the coast of Africa,
extending 20° into the Atlantic between 5° and 10°N, with secondary maxima over
land, most notably just east of the Gulf of Guinea. The usefulness of the reanalysis-
derived precipitation is known to be limited, since NCEP-NCAR II is not a next-
generation reanalysis and does not explicitly assimilate rainfall data (Kanamitsu et al.,
2002). Regardless, the reasonable qualitative agreement between the structure of the
reanalysis-derived and model-derived precipitation rate fields is encouraging.

Finally, the genesis potential together with the spatial distribution of August
through October genesis events is considered (see Figures 4.7 and 4.8). Genesis po-
tential index (GPI) is defined in Section 2.2.1 as a measure of the large-scale favor-
ability, diagnosed from absolute vorticity at 850 mb, relative humidity at 600 mb,
potential intensity (Bister and Emanuel, 2002), and vertical wind shear between 850
and 200 mb, and is calculated from monthly mean fields averaged over all years of
each climatology (Emanuel and Nolan, 2004). The genesis points, on the other hand,
are only shown for the overlapping years (1982-2009), so as to provide a fair visual
comparison of TC quantity. The average number of TCs per year ranges from 9.1 to
9.4 in the climatological simulations, compared with 9.1 in IBTrACS during the same
time period.

In general, genesis events (Figure 4.8) tend to be roughly clustered in regions of
elevated GPI (Figure 4.7) as expected. Examining the component fields separately, it

appears that the differences between the reanalysis- and the model-derived GPI are
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primarily due to the relative humidity, which is anomalously high over Florida and
low over the MDR in NCEP-NCAR II. This is likely another artifact of the choice
of reanalysis product, but it would be interesting to examine the sensitivity of GPI
across various reanalyses to confirm.

In Figure 4.8, the genesis points are color-coded, with TCs spawned by AEWs in
red, and non-African storms in blue. For Figure 4.8a, the genesis points themselves
are taken from IBTrACS, but the storm origins were diagnosed using NCEP-NCAR
IT reanalysis. As noted in previous studies (Zhao et al., 2009), HIRAM produces
anomalously few TCs in the Gulf of Mexico compared to the real world, but the origin
plots compare favorably otherwise, including in the breakdown of African versus non-
African storms. The percent of storms with African origins ranges from 71.4 to 73.6%
for the climatological ensemble members, with 72.8% in the historical dataset.

While the favorable comparison between the historical and the modeled large-scale
environment and genesis distribution is heartening, the best test of the adequacy of
HiRAM for the study of AEW activity variability is the fidelity of the AEW record
itself. This is explored in the following section and compared with the reanalysis-

derived record.

4.4 Interannual Variability of Count Statistics

Figure 4.9 provides a comparison of the historical (from NCEP-NCAR II and IB-
TrACS) and the modeled (from climatological simulations H1, H2, and H3, see Sec-
tion 2.1) AEW and TC count variability. The historical counts are shown in red, the
modeled ensemble mean is shown in blue, and the shaded areas show the count range
between the three ensemble members. In general, the interannual variability of the
modeled AEW count is of a smaller magnitude than in the historical record, but the

model does exhibit statistically significant covariance with the historical record.
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Figure 4.9: A comparison of historical (red) and modeled ensemble mean (blue) in-
terannual variation in counts of (a) AEWs, and (b) TCs, summed for August through
October (ASO) of each year. The historical records were determined from NCEP-
NCAR II reanalysis and IBTRaCS, respectively. The shaded area shows the simulated
maximum and minimum count from the three-member ensemble of simulations (HI,

H2, H3).
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While there is not a statistically significant correlation between individual clima-
tological simulation ensemble members and the historical AEW variability, there is
a notable correlation between the ensemble mean and the historical AEW variabil-
ity. Correlating the historical and modeled ensemble mean AEW count interannually
yields a coefficient of determination of R? = 0.164 (p = 0.033) and a 95% confidence
interval of 0.037 < R < 0.676. For comparison, the historical and modeled TC count
yields a coefficient of determination of R? = 0.387 (p = 0.00041), a 95% confidence in-
terval of 0.324 < R < 0.808, and there is a statistically significant correlation between
individual ensemble members and historical TC activity interannually.

The fact that the ensemble mean does show weak interannual correlation with the
historical AEW record suggests that AEW activity is at least partially determined
by the prescribed SST and thereby influenced by the large-scale environment in some
way. However, since the correlation is much weaker between modeled and historical
AEW counts than it is for TC counts, it seems that the large-scale environment exerts
less control over AEW variability than it does TC variability in the model. Coupled
with the lack of correlation between individual ensemble members and the historical
record, this may imply that the internal variability of AEW activity is greater than
TC variability. By extension, perhaps AEW variability explains a component of
the TC variability that differs between ensemble members. This idea is revisited in
Section 5.1.

As was apparent in the historical data in Section 3.2.3, there is also a direct rela-
tionship between ensemble mean AEW count and TC count in the simulations. In the
next section, correlations between AEW count and TC count in individual ensemble
members and between ensemble means are considered, along with the importance of

ENSO phase and annual trends.
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4.5 Multiple Linear Regression of TC Count

As mentioned above in Section 4.4, the climatological simulations do exhibit inter-
annually correlated AEW and TC counts. Pooling all years from the three ensemble
members together yields a coefficient of determination of R* = 0.108 (p = 0.0023),
while the ensemble average AEW count and TC count yield a coefficient of deter-
mination of R* = 0.128 (p = 0.062). Regardless, the correlation between the AEW
count and TC count in the model is weaker than the historical analog in Section 3.2.4,
but is still statistically significant.

Again, one could argue that this correlation is not causal and is instead mediated
by external factors. However, the results presented in Section 4.4 indicate that the
AEW activity exhibits internal variability beyond what is determined by the large-
scale environment through the prescribed SST. The notion that AEW activity may
exhibit variability independent of the environment is expanded upon in Section 5.1 by
considering the relationship between ensemble members, but is first subjected to the
same analysis as in Section 3.2.4 here. Namely, stepwise linear models of TC count are
constructed to determine the relative importance of ENSO index (see Appendix B for
details), AEW count, and year as predictors of TC count in climatological simulations
H1, H2, and H3.

As in Table 3.1, the three potential predictors of TC count were each tested
separately, as well as in various combinations, producing the adjusted coefficients of
determination and associated p-values shown below in Table 4.1. As in Section 3.2.4,
notation of the form y ~ 1 + xy + x5 + x3, where y is the predictand and z; are
predictors, is shorthand for the multiple linear regression model y = Cy + Cixy +
Csx9 + Csx3, where C; are constants. Although there are statistically significant
correlations, the associated lines of best fit are not necessarily well-constrained, due

to the level of variability and relatively small sample size. This issue is revisited
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in Section 7.1, where the interannual relationship between AEW and TC count is

quantified.

Table 4.1: Multiple Linear Regression of Modeled TC Counts (1982-2009)
for model runs H1, H2, and H3 (N=84)

Linear Model Adjusted R? | p-value
TC ~ 1+ AEW 0.113 1.0 x 1073
TC ~ 1 + year 0.158 1.1 x10™*
TC ~ 1 + ENSO 0.116 8.8 x 1074
TC ~ 1 + year + ENSO 0.273 9.2 x 1077
TC ~ 1 4 year + ENSO + AEW 0.339 6.4 x 1078

Pooling the years of the simulations together rather than considering only the
ensemble mean is an intentional decision. When conducting similar analysis as that
of Tables 3.1 and 4.1 for the ensemble average AEW and TC counts, the mean AEW
count does not provide additional skill beyond the ENSO index and year. This is not
surprising, as ensemble averaging helps bring the effects of the large-scale forcing to
the forefront, while pooling all years together gives a better indication of the chaotic
component of the model (Garner et al., 2009). Since the focus of this section is on the
internal variability of the atmosphere and that is best captured by individual ensemble
members, the remainder of the analysis in this chapter focuses on the pooled data
rather than the ensemble mean.

As in Section 3.2.4, the year, ENSO index, and AEW count each shows significant
skill over a constant model in explaining TC count variability. As shown in Table 4.1,
there is a statistically significant trend in the TC count data (R? = 0.158, p = 1.1 x
107%), associated with an average slope of 0.14 additional TCs each year, compared
with 0.23 in the historical record. Of AEW count, year, and ENSO phase, the annual
trend actually explains the highest percentage of variance in TC count, and each
individually explains 11.3%, 15.8%, and 11.6%, respectively. Together, year and
ENSO index account for 27.3% of the variance in TC count (p = 9.2 x 1077), but

the addition of AEW count increases this to 33.9% (p = 6.4 x 107%). The p-value to
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accept AEW count as an additional predictor in the stepwise model of TC count is
p = 0.0034, which demonstrates that AEW count provides a statistically significant
improvement over year and ENSO index alone.

As in the historical record, there is no statistically significant covariance between
AEW count and ENSO index (R?* = 0.024, p = 0.060), but the weak trend present
in AEW count in the historical record is not present in the model (R?* = 0.006,
p = 0.48). This provides support to the claim made in Section 3.2.4 that the trend
in AEW count in the reanalysis may be due to discontinuities in the assimilation of
observational data, although it could still be a real trend that the model simply fails
to capture.

Finally, again as in Section 3.2.4, both AEW count and TC count are detrended by
ENSO phase and year, and the residuals are correlated to estimate the contribution
of AEW count to TC count variability beyond what is explained by ENSO phase and
annual trends. Correlating these AEW and TC residuals yields a statistically signifi-
cant relationship, with a 95% confidence interval of 0.108 < R < 0.496 (R? = 0.099;
p = 0.0035). This effect is weaker in the simulations than it was for the historical
record, but even when the effects of ENSO phase and annual trends are removed,
AEW variability still explains approximately 10% of TC interannual variability in
the model. From this analysis, it is clear that AEW count provides skill above and
beyond the large-scale conditions encapsulated in the ENSO index in HIRAM, as it

did in the historical record.

4.6 Summary

As demonstrated above, the climatological simulations show reasonable agreement
with the historical record in terms of AEW and TC seasonality and interannual vari-

ability, and the model adequately captures the spectral signature of AEWs as well
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as the large-scale structure of the AEJ and I'TCZ. Although the climatological simu-
lations produce annual AEW and TC counts that are statistically indistinguishable
from the historical record on average, the modeled covariance between AEW and TC
counts, while still statistically significant, is weaker than in the historical record.

The model statistics are similar to the historical record in many ways, but there are
notable differences. The year, ENSO index, and AEW count each shows significant
skill in explaining variance in TC count in stepwise linear models, but each explains
less of the variance in the climatological simulations than in the historical record
(compare Tables 3.1 and 4.1). Detrending both the AEW and TC counts for ENSO
phase and annual trend, as in the reanalysis-derived historical record, the modeled
residuals are significantly correlated. The modeled AEW residuals explain 10% of
the TC residuals, which is statistically significant, though smaller in magnitude than
what was found in the reanalysis-derived historical record (40%). Although there was
a significant trend in the AEW count in the reanalysis-derived historical record, this
was not present in the modeled record. This may be due to discontinuities in the
assimilation of observational data in the reanalysis, or the trend could be real and
the model could simply fail to capture it.

While the individual ensemble members do not exhibit statistically significant
correlation with historical AEW variability, they do with historical TC variability.
Both the ensemble average AEW and TC annual count do covary with the respective
historical count. Since ensemble averaging helps isolate the effects of the large-scale
forcing, this implies that AEW activity is at least partially determined by the pre-
scribed SST, and thereby the large-scale environment, but to a lesser extent than TC
activity. Since AEW activity exhibits marked variability distinct from that forced
by the large-scale environment, it follows that the stochastic component of the AEW
variability could be related to the portion of the TC variability unexplained by the

large-scale environment. Along the same lines, AEW variability may explain a com-
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ponent of the TC variability that differs between ensemble members. This is explored
in the following chapter.

Given the above caveats, the model reliably captures the major features of the
climatological AEW and TC record across multiple temporal and physical scales. Now
that the ability of HHRAM to reasonably capture the relationship between AEWSs and
TCs has been shown via its agreement with the reanalysis-derived historical record,
HiRAM is used exclusively in the next two chapters to further probe the AEW-TC

relationship.
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Chapter 5

Results: Isolating the Internal Variability
of AEW Activity by Minimizing the Effects
of Interannual Variation in SST

The results of Chapters 3 and 4 have provided preliminary evidence that there is a
significant component of AEW activity that may be essentially stochastic, in that it is
unexplained by the large-scale environment. This is noteworthy, because the stochas-
tic AEW variability may explain a component of the TC variability that remains
unexplained by known environmental factors. To isolate and study this stochastic
component of AEW activity, first the climatological simulations are revisited in Sec-
tion 5.1. Next the simulations with interannually invariant SSTs, the control simula-
tion and the perpetual La Nina simulation, are described and analyzed in Sections 5.2
and 5.3. Finally, the results of isolating the internal variability of AEW activity are

summarized in Section 5.4.

5.1 Reyvisiting the Climatological Simulations

Since ensembles provide multiple realizations over the same time period, they can be
used to diagnose the internal variability of the atmospheric system. This internal vari-

ability is explored further here, first by considering the consistency across ensemble
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members (Section 5.1.1) and then by considering the perturbations of each ensemble

member from the ensemble mean (Section 5.1.2).

5.1.1 Consistency across Ensemble Members

As mentioned in Section 4.4, unlike the ensemble mean, individual ensemble member
AEW counts are not correlated with historical AEW count interannually. Examining
modeled AEW counts from different climatological ensemble members, there is no
significant interannual correlation between ensemble member AEW counts, as shown
in Figure 5.1 for both August through October (ASO) and June through November
(JJASON) totals. This indicates that, at least in the model, AEW count exhibits
variability that is independent from large-scale forcing, since each ensemble member
is forced with identical SSTs. This behavior is distinct from that of TC count, for
which there is strong correlation between ensemble members, since TC count does
have a strong dependence on SSTs. AEW counts totaled for the months of August
through October annually for each ensemble member are shown in Figure 5.2. The
perturbations of ensemble member counts from the ensemble average are examined
in Section 5.1.2.

Even in the absence of discernible interannual correlation between ensemble mem-
bers, there is strong agreement in average annual count, for not only AEWSs, but also
developing AEWSs, African TCs, and all TCs, as shown in Figure 5.3. While the AEW
variability is not completely dependent on SST variability, and AEW count varies on a
year-to-year basis, there is a well-defined climatological mean level of activity about
which AEW count fluctuates. As is demonstrated below, this climatological mean
does not seem sensitive to changes in ENSO phase (see Section 5.3), but can be

perturbed through manipulation of the large-scale environment (see Chapter 6).
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Figure 5.1: Correlation coefficients (R-values) of AEW count between different en-
semble members (H1-H2, H1-H3, and H2-H3) for August through October total AEW
counts (ASO, light grey) and June through November total AEW counts (JJASON,
dark grey). Error bars denote 95% confidence intervals.
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Figure 5.2: Modeled August through October annual African easterly wave count for
each ensemble member of the climatological suite of HIRAM simulations (H1 in blue,
H2 in red, and H3 in green).
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Figure 5.3: Modeled August through October average counts for African easterly
waves (AEW), developing African easterly waves (AEW-TC), African tropical storms
(TC-AEW), and all tropical storms (TC) for each ensemble member of the climato-
logical suite of HIRAM simulations (H1 in blue, H2 in red, and H3 in green). Error
bars denote 95% confidence intervals.

5.1.2 Perturbation from Ensemble Mean

Since the ensemble mean is the portion of the signal most influenced by the large-
scale environment, isolating the perturbation from this ensemble mean provides an
estimate of the variability that remains unexplained by the variability of the large-
scale conditions. All three ensemble members were forced with the same SSTs and
therefore had arguably similar large-scale environments by design. To isolate the
stochastic component of the AEW and TC variability in the climatological ensemble
members, perturbation counts for each ensemble member year are constructed by
subtracting the annual ensemble mean.

This concept is formalized using the following notation:

AEW = AEW + AEW'

TC = TC + T

where the total AEW and TC counts of each ensemble member are broken into the

sum of the ensemble average (denoted with an overbar) and the perturbation from
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Figure 5.4: Scatterplot of the perturbation of each climatological model ensemble
member (H1, H2, H3) from the ensemble mean annual TC count versus AEW count
for the months of August through October (ASO). Each point is color-coded by the
ENSO phase of the year, with El Nino years in red, La Nina years in blue, and neutral
ENSO years in yellow.

that average (denoted with a prime). In this definition, both the ensemble average
and the perturbation from that average are time-varying. The terms AEW and TC
can be thought of as the variance due to the environmental variability, while AEW’
and TC' can be thought of as the stochastic component of total variance.

As mentioned in Section 4.5, there is a statistically significant correlation between
AEW and TC (R? = 0.128, p = 0.062), but when probing this relationship further
using multiple linear regression, AEW does not provide additional skill beyond the
ENSO index and year in predicting TC. This supports the notion that the variance
of the ensemble mean AEW count does not contain unique information beyond that
forced by the large-scale environment.

The relationship between annual perturbation counts is shown in a scatterplot
of TC' versus AEW’ in Figure 5.4. The perturbation AEW and TC counts exhibit

statistically significant covariance, with a 95% confidence interval of 0.171 < R <
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0.543 (R? = 0.138, p = 0.00050). About 14% of the variance in perturbation TC
count is explained by the perturbation AEW count, and a least squares regression

returns the following line of best fit:
TC' ~ 0.25- AEW'. (5.1)

This can be interpreted to mean that the conversion rate for additional AEWs (above
and beyond the average number purportedly determined by the large-scale environ-
ment) becoming TCs is 4:1 on average.

Another way to consider the internal variability of the model atmosphere is to
remove the interannual variability in large-scale environmental factors as much as
possible, by not only subtracting for the effects of the interannual variation as above,
but by removing the interannual variation in SST entirely. The next section accom-
plishes this, by replacing the historical SSTs with climatologically average SSTs as a

lower boundary condition.

5.2 Internal Variability of Simulations with Inter-
annually Invariant SST's

The control and perpetual La Nina simulations are each forced with composite SST's
that vary seasonally but do not change from year to year (see Section 2.1 for more
details). The control simulation has the climatologically average SST from 1982-2005
as its lower boundary condition, and the perpetual La Nina simulation has composite
SST from the strongest La Nina years (see Appendix B). Although there could still
be some internal variation in large-scale favorability, the large-scale environment as
encapsulated in the SSTs is effectively constant from year-to-year within each of these
simulations. Even though these simulations are forced with interannually invariant
SSTs, their modeled AEW and TC counts still exhibit marked variability. This
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Figure 5.5: Scatterplot of annual TC count versus AEW count for the months of
August through October (ASO) for the control simulation (black diamonds) and the
perpetual La Nina simulation (blue triangles), along with the corresponding lines of
best fit and coefficients of determination from least-squares linear regression.

variability is a measure of the internal atmospheric variability of the model, similar
to the perturbation counts considered above in Section 5.1.2.

As is discussed further in Section 5.3, while there is a discernible increase in TC
activity, there is no statistically significant difference in average AEW count from
the control to the perpetual La Nina simulations. Further, there is no significant
difference in the relationship between AEW and TC variability. In Figure 5.5, a
scatterplot of annual (ASO) TC count versus AEW count, this manifests cleanly as
a vertical shift from the control data (shown in black) to the perpetual La Nina data
(shown in blue). While the coefficients of determination between the TC and AEW
counts may appear to be different for the control simulation (R? = 0.329, p = 0.0081)
and the perpetual La Nina simulation (R* = 0.142, p = 0.10), there is significant
overlap in the confidence intervals and the two are not statistically distinguishable.

While the two simulations have indistinguishable AEW counts on average, for

the same number of AEWs, there are typically more TCs in the perpetual La Nina
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simulation than in the control simulation. Another way to interpret this is that the
baseline TC activity level is higher in La Nina conditions than average environmental
conditions due to increased large-scale favorability, but the interannual variability is
similarly affected by the AEW count variance. These simulations are further unpacked

in the following section.

5.3 Control and Perpetual La Nina Simulation
Comparison

Past studies and present climatological analysis indicate that ENSO phase may play
a role in modulating the relationship between AEW and TC variability. There are
hints in Chapter 3 that La Nina years in particular could exhibit anomalous AEW-
TC correlations, and although the sample sizes are too small to resolve any potential
dependence, this motivates the study of a perpetual La Nina simulation in comparison
to a climatological control. The internal variability of the atmosphere in the control
and perpetual La Nina simulations, especially the covariance of AEW and TC count,
is discussed above in Section 5.2. In this section, the aggregate statistics for these
simulations are compared to evaluate the impacts of ENSO phase on the large-scale
environment, AEW count, and TC count. Aggregate count statistics and spectral
statistics are examined in Section 5.3.1. Section 5.3.2 provides a comparison of large-
scale environmental factors, including GPI and the associated spatial distribution of
genesis events. The significance of ENSO phase in light of these results is briefly

discussed in Section 5.3.3.

5.3.1 Count Statistics

Figure 5.6 shows averaged monthly AEW counts, TC counts, developing AEW counts,

and African TC counts for the perpetual La Nina and the control simulations. There
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is no significant difference in AEW count seasonal cycle between the experimental and
the control simulations. While there is a difference in the magnitude of the signal for
the La Nina TC counts, developing AEW counts, and African TC counts, the general
shape of the seasonal cycle remains unchanged for all counts.

Summing these counts for the months of August through October, the differ-
ences between the perpetual La Nina and control simulations are readily apparent
in Figure 5.7. A Student’s t-test between La Nina and control AEW counts returns
a p-value of p = 0.39, revealing that there is no significant change in the number
of AEWs for perpetual La Nina conditions with over 95% confidence. As expected,
there is an increase in the number of TCs under La Nina conditions (p = 0.064).
The perpetual La Nina simulation also shows a significant increase in the number of
developing AEWs (p = 0.051) and African TCs (p = 0.032) relative to the control.

Not only is the AEW count indistinguishable between these two model simulations,
but the control and La Nina simulations have very similar spectral signatures of AEW
activity as well. The 1-10 day band-pass filtered 850 mb meridional winds averaged
between 10°N and 20°N near the coast of Africa from August 1 through October 31
(see Section 2.3.3) are used to verify the level of AEW activity. The control and La
Nina simulation spectra are not shown here, as they do not exhibit notable differences
from climatology, but the climatological spectra are shown in Figure 4.3.

Each simulation has spectral statistics that fall within the range of variation ex-
hibited by the climatological ensemble members (see Figure 2.8). Specifically, the
centroid for the control simulation is 3.68 days, the La Nina simulation is 3.67 days,
and the centroids for the climatological ensemble members (H1, H2, H3) are be-
tween 3.62 and 3.69 days. Similarly, the difference between the percent of the power
in the 3-5 day band for the control and the perpetual La Nina simulations is less
than the variability exhibited by the climatological ensemble members, with 59.4% in

the control, 58.2% in the perpetual La Ninia simulation, and 58.6% to 60.5% in the
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Figure 5.7: Modeled August through October average counts for African easterly
waves (AEW), developing African easterly waves (AEW-TC), African tropical storms
(TC-AEW), and all tropical storms (TC) for the perpetual La Nina simulation (blue)
and the associated control simulation (white). Error bars denote 95% confidence
intervals.

climatological ensemble. Since the difference in spectral statistics between climato-
logical ensemble members is larger than between the control and perpetual La Nina
simulations, there is no detectable difference between the La Nina and the control

simulations” AEW activity as diagnosed by spectral characteristics.

5.3.2 Large-Scale Environmental Factors

Unsurprisingly, the the large-scale environment is more favorable for development in
the perpetual La Nina simulation in comparison with the control. Figure 5.8 includes
the La Nina simulation GPI calculated from monthly mean fields (a), the control
simulation GPI (b), and the difference between the two (c). For more information on
the calculation of GPI, see Section 2.2.1. The GPI anomaly in Figure 5.8c¢ exhibits
good agreement with Figure 6b of Camargo et al. (2007a), which also shows the
ASO La Nina GPI anomaly, calculated from NCEP Reanalysis data for the years
1950-2005. As in the historical data examined by Camargo et al. (2007a), there is a
well-defined net increase in GPI in the Atlantic basin in association with modeled La

Nina conditions.
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Figure 5.8: Genesis potential index for the months of August through October, for
(a) the perpetual La Nina interannually invariant simulation, (b) the control inter-
annually invariant simulation, and (c) the difference, i.e., the control GPI subtracted
from the perpetual La Nina GPI.
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The GPI in the La Nina simulation is predominantly elevated in the MDR (see
Figure 5.8). The basin-wide average GPI is 4.8% greater in the perpetual La Nina
simulation when compared with the control, and 22.5% greater in the MDR. This is
also evident in the spatial distribution of genesis events shown in Figure 5.9, with
a 44.4% increase in TCs developing in the MDR, a 19.5% increase outside of the
MDR, and a total increase of 31.4%. As discussed in Section 5.2, although there is
no significant change in the AEW activity or the degree of covariance between AEW
count and TC count, the percent of TCs with African origins increases from 67.6%

in the control simulation to 74.1% in the perpetual La Nifia simulation.

5.3.3 Significance of ENSO Phase

There is no significant difference in AEW activity or seasonal cycle between the per-
petual La Nina and the control simulations, regardless of whether diagnosed through
count or spectral statistics. There is a difference in the magnitude of the seasonal
cycle of developing AEW count, African TC count, and TC count signals for the
perpetual La Nina simulation, although the general distribution of events within the
seasonal cycle is the same as for the control simulation. These differences in magni-
tude present clearly in the August through October total counts of developing AEWs,
African TCs, and TCs, each of which shows a statistically significant increase from
the control to the perpetual La Nina simulation.

While these simulations suggest that AEW count is not strongly dependent on
ENSO state, the number of waves that develop clearly is, likely owing to changes in
the large-scale favorability. In the perpetual La Nina simulation, GPI increases are
especially concentrated in the MDR, and more TCs form there accordingly. Although
the perpetual La Nina simulation does not produce statistically significantly more
AEWSs, a larger portion of TCs have their origins in AEWs. The percentage of
AEWSs that develop is not fixed, nor do a certain percentage of TCs form from AEWs
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Figure 5.9: Tropical storm origins for the months of August through October for
twenty model years, for (a) the perpetual La Nina interannually invariant simulation,
and (b) the control interannually invariant simulation. Genesis points of storms
spawned by AEWs are shown as red dots, non-African storms as blue dots.
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regardless of the large-scale conditions. To the contrary, these simulations show that
environmental favorability can indeed be a limiting factor in the number of AEWs

that develop into TCs.

5.4 Summary

One theory in the existing literature is that AEW and TC count are both primarily
determined by environmental factors, and any covariance between the two is simply
due to the influence of changes in large-scale favorability (Caron and Jones, 2011).
However, the evidence shown above clearly demonstrates that this is not the case
in the HIRAM simulations, further strengthening the argument that AEWSs play an
active role in determining TC variability.

The presence of TC count covariance coupled with the lack of covariance in AEW
count between climatological ensemble members, forced with identical historical SST
boundary conditions, indicates that there is significant AEW variability that is in-
dependent of the large-scale forcing. Separating the interannual variability of the
climatological simulations into that more closely linked with environmental fluctua-
tions (the ensemble average) and the stochastic component (the perturbation from
the ensemble average), the stochastic component of AEW variability shows significant
positive correlation with the corresponding T'C variability. This provides further evi-
dence that variations in AEW count may explain a component of the TC variability
that remains unexplained by known environmental factors.

That is not to say that environmental factors are unimportant. The fact that a
statistically significant change in climatologically average TC count is evident between
simulations with the same average number of AEWs, namely the perpetual La Nina
and the control simulations, supports the notion that environmental factors conducive

to TC development are more important than the number of AEWSs in determining the
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average number of TCs that form annually. Even so, the perpetual La Nina and the
control simulations both exhibit the same AEW-TC covariance on interannual scales
that was evident in the climatological simulations, even in the absence of interannual
variability in the SST forcing. This too supports a direct connection between AEW
count and TC count variability, and while this connection may be of secondary im-
portance to large-scale conditions when it comes to climatologically average counts,
it does seem to be independent of forcing via the SST boundary condition.

When the effects of interannual variability of the large-scale environment are di-
minished, either through considering the perturbation from the ensemble mean in
climatological simulations or through examination of simulations with interannually
invariant SST's, it is clear that there is significant correlation between AEW and TC
counts. Overall, the model exhibits notable internal AEW variability, which explains

a significant portion of the TC variability unexplained by changes in SSTs.
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Chapter 6

Results: Perturbing the Environment to
Examine the Relationship between
Large-Scale Favorability, AEW Activity,
and TC Activity

By systematically varying the albedo of Africa, it is possible to perturb the large-scale
environment beyond current climatological variability and examine how changes in
AEW activity and overall environmental favorability interact and affect TC activity.
The focus of this chapter is on the suite of uniform albedo simulations, which share
the same control simulation as in Chapter 5. The four simulations in the suite have
interannually invariant climatological SST's, as in the control simulation, but the
albedo over Africa is prescribed to be uniform. The simulations are numbered 1-4 in
order of increasing albedo, with albedos of 7.5%, 15%, 30%, and 45% (see Section 2.1.2
for more information).

First, the role of African albedo is assessed in Section 6.1, through comparison
with the control simulation (Section 6.1.1), an exploration of the model sensitivity to
the value of the albedo parameter (Section 6.1.2), and a cursory discussion of poten-
tial physical mechanisms at work (Section 6.1.3). Next, the effects of the large-scale
favorability and the AEW count on TC count are disentangled in Section 6.2, us-
ing GPI as a reference (Section 6.2.1), considering each of the components of GPI

separately (Section 6.2.2), and employing multiple linear regression techniques (Sec-
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tion 6.2.3). Finally, a summary of the results of the albedo simulations and their
relevance for understanding the relationship between AEW and TC activity is pro-
vided in Section 6.3. As in previous chapters, unless otherwise specified, the fields
and quantities discussed are averaged from August 1 through October 31 of all 20

years of the simulation to produce “annual” climatological averages.

6.1 The Role of African Albedo

The original motivation for manipulating African albedo was the idea that removing
the strong gradient in surface albedo might disrupt the surface temperature gradient
between the Sahara and the rainforest to its south, potentially weakening the AEJ. As
described further in Section 6.1.1, removing the albedo gradient alone does not have
a significant effect on the surface temperature gradient, the large-scale environment,
or AEW statistics in HHRAM. While the modeled atmosphere is not sensitive to the
gradient in the surface albedo, it is sensitive to the magnitude of the surface albedo.
The effects of varying the value of the albedo are discussed in Section 6.1.2. Since this
suite of simulations is novel, the bulk of this section is descriptive, with a preliminary

physical explanation for the model behavior in Section 6.1.3.

6.1.1 Comparing Control to a Uniform Albedo Simulation

In this section, the uniform albedo simulation with 30% albedo over the entire conti-
nent of Africa is compared against the control simulation with realistic surface albedo.
The surface albedos of northern Africa are shown in Figure 6.1. As noted in Sec-
tion 2.1.2, the albedo over Africa is not completely “uniform” in the experimental
simulations, as the soil albedo model has a dependence on azimuth angle and ge-
ographical variation in the direct to diffuse ratio of solar radiation. This accounts

for the weak gradient present in Figure 6.1a, which although non-zero, is trivial in
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comparison with the strong gradient in albedo between the Sahel and the Sahara in
Figure 6.1b.

Despite the lack of a strong gradient in surface albedo, this uniform albedo sim-
ulation produces AEW and TC count statistics that are indistinguishable from the
control simulation (see Figure 6.2). The spectral measures of AEW activity are also
quite similar, with the differences in spectra shown in Figure 6.3 being largely within
the range of variability observed among the climatological ensemble members (recall
Figure 4.3). Although the percent of the power located in the 3-5 day band is larger
for the uniform albedo simulation than the control, 64.4% and 59.4% respectively,
the spectral centroid for both simulations is 3.68 days.

Figure 6.4 shows the genesis potential together with the spatial distribution of
all August through October genesis events (see Section 2.2.1 for more details about
GPI). By visual inspection, the differences in spatial distribution of the GPI in these
two simulations are within reasonable range of the level of variability found in the
climatological ensemble (recall Figure 4.7). The uniform albedo simulation does have
slightly lower GPI in the MDR in comparison to the control, with values of 1.4 and
1.6, respectively. This is reflected in the relatively lower concentration of genesis
events in the MDR and higher concentration in the subtropical northern Atlantic for
the uniform albedo simulation. Averaging over the entire Atlantic basin, the two
simulations each yield identical values of GPI (1.7) and statistically indistinguishable
TC count.

The limited impact of removing the surface albedo gradient speaks to the dis-
connection between surface and planetary albedo, and by extension, the importance
of the position and strength of the I'TCZ. As the planetary albedos shown in Fig-
ure 6.5 indicate, the surface albedo in areas of convection is unimportant, because
the cloud cover dominates the planetary albedo. The surface albedo over northern

Africa, where there is limited cloud cover, does impact the planetary albedo, opening
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Figure 6.1: Average surface albedo for the months of August through October, for
(a) the uniform African albedo simulation with 30% albedo over Africa, and (b) the
control simulation with realistic African albedo.
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Figure 6.2: Modeled August through October average counts for African easterly
waves (AEW), developing African easterly waves (AEW-TC), African tropical storms
(TC-AEW), and all tropical storms (TC) for the control simulation (white) and the
uniform African albedo simulation with 30% albedo (orange). Error bars denote 95%
confidence intervals.
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Figure 6.3: Power spectrum of 1-10 day band-pass filtered meridional wind at 850
mb, averaged between 10°N and 20°N, at the coast of Africa (15°W), for August 1
through October 31, for (a) the uniform African albedo simulation with 30% albedo
over Africa, and (b) the control simulation with realistic African albedo. The 3-5 day
band is highlighted in cyan.
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itself to manipulation as in Section 6.1.2. Despite very different surface albedo distri-
butions, given the current magnitude of the surface albedo, the 30% uniform albedo
and control simulations have strikingly similar planetary albedo.

Additional climatological fields for the uniform albedo simulation are shown with
the other members of the suite, including zonal wind at 600 mb (Figure 6.10) and
precipitation rate (Figure 6.11), which also show good agreement with the control for
30% albedo. To avoid belaboring the point, every field is not shown here, but visual
inspection of other climatological fields, including temperature, meridional velocity,
and zonal velocity, both for cross-sections at 5°E and 10°W, and at various levels over
Africa and the eastern Atlantic, reveals excellent agreement between the albedo simu-
lation with 30% albedo over the entire continent of Africa and the control simulation

with realistic surface albedo.

6.1.2 Sensitivity to Value of Uniform Albedo Parameter

While the gradient in the observed surface albedo over Africa does not seem to be of
critical importance due to overlying cloud cover dominating the planetary albedo in
the transition zone, as shown above in Section 6.1.1, the magnitude of the albedo in
the region of the Sahara does seem to impact the planetary albedo, and by extension
the overall model climate. In this section, the effects of variation in the surface albedo
parameter for the uniform albedo simulations are described, through examination
of several fields of interest over Africa and the Atlantic: the genesis potential and
associated genesis points, the zonal winds at the level of the AEJ core, and the
precipitation rates. Various quantitative measures of favorability and storm activity
are also discussed throughout and are summarized in Figures 6.12, 6.13, and 6.14 at
the end of the section.

Spatial plots of GPI are shown in Figure 6.6, with the difference between each
perturbed simulation and the control simulation shown in Figure 6.7. While it is
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Figure 6.5: Average planetary albedo for the months of August through October, for
(a) the uniform African albedo simulation with 30% albedo over Africa, and (b) the
control simulation with realistic African albedo.
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obvious from these figures that the basin-wide average GPI increases monotonically
with increasing albedo, it is also clear that it does not do so in a spatially uniform
fashion, with the MDR in particular exhibiting non-monotonic behavior. To clarify
this point quantitatively, Figure 6.12a provides a plot of basin-wide average GPI as
a function of albedo, and Figure 6.12b shows average GPI in the MDR, also as a
function of albedo.

The TC genesis points are shown in Figure 6.8, which follow the structure of the
GPI to a large extent, but also exhibit some differences. Total TC count increases
with increasing albedo, although unlike the GPI, it shows some indication of leveling
off (see Figure 6.14a). While the MDR GPI actually decreases from the penultimate
to ultimate albedo simulation (see Figure 6.12b), the number of TCs in the MDR
in the third and fourth albedo simulations are indistinguishable (see Figure 6.14b).
These differences from the GPI may be due to the competing effect of the AEW
count statistics, shown in Figure 6.9. While the basin-wide average GPI increases
monotonically and quite linearly with albedo (R? = 0.982), the AEW count levels off
and is less linear (R* = 0.803). The competing effects of GPI and AEW count are
examined more closely in Section 6.2.

AEW counts seem to scale with jet strength to some extent (see Figure 6.10), the
changes in which, in turn, are inversely proportional to the amount of precipitation
in the tropical rain belt associated with the I'TCZ (see Figure 6.11). As is apparent in
Figure 6.10, with increasing albedo, the AEJ core shifts equatorward and westward,
while also strengthening. The rain belt also shifts equatorward, but weakens with
increasing albedo in Figure 6.11.

For brevity, spatial plots of the components of GPI are not shown here, but their
average values, both in the entire Atlantic basin (left column) and in the MDR (right
column), are plotted against the uniform albedo parameters in Figures 6.12 and 6.13.

The components of GPI include the relative humidity at 600 mb in units of percent
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Figure 6.9: Modeled August through October average counts for African easterly
waves (AEW), developing African easterly waves (AEW-TC), African tropical storms
(TC-AEW), and all tropical storms (TC) for the uniform African albedo simulations,
with albedos of 7.5% (dark green), 15% (light green), 30% (orange), and 45% (yellow),
and the control simulation (white). Error bars denote 95% confidence intervals.

(Figure 6.12¢, d), the maximum potential intensity in units of m s~' (MPI; Bister
and Emanuel 2002; Figure 6.12e, f), the vertical wind shear between 850 and 200 mb
in units of m s~ (Figure 6.13a, b), and the absolute vorticity at 850 mb in units of

! (Figure 6.13c, d). More details on these parameters and the spatial averaging can
be found in Section 2.2.1.

Both the relative humidity in the entire basin and the relative humidity in the
MDR have a direct relationship with African albedo (see Figure 6.12¢, d). The pat-
tern of maximum potential intensity in the Atlantic is quite different from that in the
MDR, with neither showing completely monotonic response to albedo changes (see
Figure 6.12e, f). The shear generally decreases with increasing albedo up through
30% albedo, but levels off in the case of the entire Atlantic, or rebounds from there
in the case of the MDR (see Figure 6.13a, b). The absolute vorticity in the MDR
has an inverse relationship with albedo (see Figure 6.13d), which likely reflects the
weakening of the ITCZ, but shows no clear pattern for the basin-wide average (see

Figure 6.13c). The explanatory power of each of these component fields in under-
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standing the differences in TC count variability between the members of the uniform

albedo suite is diagnosed in Section 6.2.2.

6.1.3 Physical Relevance of Albedo

Much of the contemporary literature suffers from the lack of a common vernacular to
discuss the relationships between tropical phenomena, with unresolvable discrepan-
cies between the definitions of AEWs and the ITCZ in particular (Nicholson, 2009).
This makes it difficult to conduct a meta-analysis to construct narratives that pro-
vide conceptual explanations of the interrelated dynamics of the AEJ, ITCZ, and
AEWSs. For this reason, the below explanation is fairly speculative and further study
is required to understand the physical mechanism of the atmosphere’s sensitivity to
African albedo when it comes to AEWSs. Since the potential connection between the
albedo, the AEJ, and AEWSs are a means to an end, this connection is only discussed
briefly below.

Given the above caveats, there are two general “modes” in West Africa, namely
“wet years” that are typified by a weaker and more poleward AEJ, and “dry years”
typified by a stronger and more equatorward AEJ (Grist and Nicholson, 2001; Nichol-
son and Grist, 2001). Wet years are also associated with a stronger West African
Westerly Jet (WAWJ), located around 10°N, near the surface, from the eastern At-
lantic toward the West African coast (Pu and Cook, 2012). Grist et al. (2002) found
that in wet years AEWSs tend to be stronger but have longer periods, although the
direction of causality was not clear. Relatedly, Thorncroft and Rowell (1998) found
that AEW activity is positively correlated with the strength of the AEJ. These re-
sults taken together indicate that as the AEJ shifts equatorward and strengthens (as
it does in the dry mode), one would expect AEW activity to increase. Although it
seems the ITCZ also plays a pivotal role (Hsieh and Cook, 2005), due to incompat-
ible definitions of the ITCZ, it is difficult to speculate precisely how. For example,
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Figure 6.12: Quantitative measures of large-scale favorability, including the genesis
potential index (GPI; a and b), relative humidity at 600 mb in units of percent (¢ and
d), and maximum potential intensity in units of m s~! (MPI; Bister and Emanuel,
2002; e and f), averaged over the entire Atlantic basin (left) and the MDR (right).
Definitions and details of the spatial averaging can be found in Section 2.2.1.
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Figure 6.13: Quantitative measures of large-scale favorability, including the vertical
wind shear between 850 and 200 mb in units of m s™! (a and b) and absolute vorticity
at 850 mb in units of s7! (c and d), averaged over the entire Atlantic basin (left) and
the MDR (right). Definitions and details of the spatial averaging can be found in
Section 2.2.1.
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(a) Atlantic TC Count vs. Albedo (b) MDR TC Count vs. Albedo
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Figure 6.14: Average annual (ASO) count of (a) Atlantic TCs, (b) MDR TCs, and
(c) AEWs, plotted by surface albedo value over Africa.

Nicholson and Grist (2001) found the equatorward shift of the AEJ in dry years to
be associated with the equatorward shift of the ITCZ.

Similar patterns as those described above arise climatologically in the perturbed
albedo simulations. In the uniform albedo simulations, there is a direct relationship
between the strength of the precipitation belt associated with the ITCZ and the
strength of the WAW.J, which are inversely related to the strength of the AEJ. As the
albedo increases, the I'TCZ shifts equatorward and weakens, the WAWJ weakens, and
the AEJ shifts equatorward and strengthens in turn. As the AEJ shifts equatorward
and strengthens, the AEW count increases. In general, it seems increasing the African
albedo has a similar effect as transitioning from the wet mode to the dry mode. This
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makes physical sense and is consistent with Charney’s albedo-precipitation feedback
hypothesis (Charney, 1975). Charney found that increasing the albedo of north Africa
from 14% to 35% in an early GCM led to the ITCZ shifting equatorward several
degrees.

The Sahel experienced extreme drought conditions in the 1970s and 1980s, and
while for a time this was thought to be due to anthropogenic desertification and
the albedo-precipitation feedback, the current consensus is that any desertification
that may have occurred would not be enough to account for the observed changes in
rainfall, and changes in ocean temperatures are more likely the primary cause (Folland
et al., 1986; Nicholson et al., 1998; Giannini et al., 2003; Held et al., 2005). Whether
through ocean temperature changes or land mass changes, there is a strong body
of evidence supporting the notion that the I'TCZ tends to be displaced toward the
anomalously warm hemisphere (Broccoli et al., 2006; Kang et al., 2008, 2009; Kang
and Held, 2012; Kang et al., 2014). In the uniform albedo simulations, increasing
the albedo generally leads to cooling, as a greater proportion of incident radiation
is reflected. This cooling is disproportionately located to the northern hemisphere,
specifically northern Africa, due to differences in land mass and cloud cover. As
the surface in the northern hemisphere cools, the I'TCZ shifts southward due to the
return flow of the anomalous Hadley circulation (Kang et al., 2009). The origins of
the associated weakening of the ITCZ with its equatorward shift could be in part due
to the fact that the SSTs are prescribed in the model, and so as the ITCZ shifts, it
moves away from the typically collocated SST relative maximum.

While this is somewhat speculative, the preliminary explanation of the the phys-
ical relevance of the albedo is now summarized. As the African albedo increases in
the uniform albedo simulations, this triggers anomalous cooling in northern Africa.
Anomalous cooling in the northern hemisphere leads to a southward shift of the ITCZ.

These changes are similar to moving from a climatology that resembles the wet mode
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toward something resembling the dry mode, increasing the strength of the AEJ and
leading to more AEW activity. Further study is necessary to better asses the validity
of this explanation. This is left to future work, since the focus of this dissertation is
on the relationship between AEW activity, large-scale favorability, and TC activity,
not on the origins of or controls on AEWs. As detailed in the previous sections,
increasing African albedo leads to increases not only in AEW activity, but also in the
genesis potential of the Atlantic. The relevance of these factors to TC variability is

discussed in the following section.

6.2 Importance of Large-Scale Favorability and
AEW Count for TC Count

Manipulating the value of the surface albedo over Africa in the uniform albedo sim-
ulations has successfully perturbed the annual AEW count significantly beyond the
interannual variability observed climatologically (recall Figure 6.9). Since this manip-
ulation also led to significant changes in the GPI (recall Figures 6.6, 6.7, and 6.12),
the ultimate changes in average TC count cannot immediately be ascribed to these
changes in AEW count. This section is dedicated to disentangling and quantifying
the relative importance of the AEW count and large-scale environmental factors in
explaining TC count.

As shown in Figure 6.15, annual TC count is well correlated with annual AEW
count across members of the uniform albedo suite, both for the total Atlantic basin
TC count (R? = 0.955, p = 0.023), and the count of TCs that formed in the MDR
(R* = 0.998, p = 0.0012). Tt is worth noting that as in all previous sections, all
uniform albedo simulations also exhibit statistically significant interannual correlation

between AEW count and TC count, with coefficients of determination of consistent
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(a) Atlantic TC Count vs. AEW Count (b) MDR TC Count vs. AEW Count
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Figure 6.15: Scatterplots of uniform albedo simulation suite members’ average annual
(ASO) TC count versus AEW count, for (a) all Atlantic TCs, and (b) only TCs that
formed in the MDR.

magnitude with the control simulation (see Section 5.2). Note too that all simulations
have interannually invariant SST, like the control.

The TC count also shows correlation with GPI, both averaged over the MDR and
the entire Atlantic basin. Figure 6.16 shows Atlantic TC count (a; R* = 0.974, p =
0.013), MDR TC count (b; R? = 0.871, p = 0.067), and AEW count (c; R* = 0.874,
p = 0.065) versus Atlantic GPI. While the linear regression between Atlantic TC count
and Atlantic GPI returns a statistically significant positive correlation coefficient at
the 95% confidence level, the MDR TC count and AEW count correlations with the
Atlantic GPI are not statistically significant. Similarly, Figure 6.17 shows Atlantic
TC count (a; R? = 0.921, p = 0.040), MDR TC count (b; R? = 0.973, p = 0.014),
and AEW count (c; R? = 0.986, p = 0.0069) versus MDR, GPI, all three of which
exhibit statistically significant positive correlation at the 95% confidence level.

It is reasonable that better correlations are found between MDR GPI and MDR
TC and AEW counts than for the basin-wide GPI, since a greater percentage of TCs
in the MDR are spawned by AEWs and are therefore more sensitive to changes in
AEW count. It is worth noting that since GPI was designed to correlate with TC

count, it is possible that the index itself might be contaminated by actual genesis
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(a) Atlantic TC Count vs. Atlantic GPI (b) MDR TC Count vs. Atlantic GPI
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Figure 6.16: Scatterplots of average annual (ASO) count statistics versus average
Atlantic GPI for the uniform albedo simulation suite, including (a) all Atlantic TCs,
(b) only TCs that formed in the MDR, and (¢) AEWs.

events, thereby making it impossible to observe a change in TC activity without a

corresponding change in GPI.

6.2.1 Removing the Effect of GPI by Regression

Since Section 6.2 demonstrates that there are statistically significant correlations
between both GPI metrics and TC count, AEW count and TC count, and even AEW
count and MDR GPI, in order to discern if AEW provides any skill beyond GPI in
explaining TC count, both AEW and TC average annual counts are detrended by GPI

in this section, and the residuals are correlated. By similar logic as in Section 5.1.2,
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(a) Atlantic TC Count vs. MDR GPI (b) MDR TC Count vs. MDR GPI
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Figure 6.17: Scatterplots of average annual (ASO) count statistics versus average
MDR GPI for the uniform albedo simulation suite, including (a) all Atlantic TCs,
(b) only TCs that formed in the MDR, and (c) AEWs.

this isolates the AEW and TC activity signals that remain unexplained by the large-
scale environment as communicated by GPI, but this time at the climatological level
rather than the interannual level.

First, the AEW and TC counts are detrended by basin-wide Atlantic GPI and
the residuals are plotted in Figure 6.18. For the total TC count and the AEW count
residuals (Figure 6.18a), the coefficient of determination is R? = 0.913 with a p-value
of p = 0.044, which is statistically significant at the 90% confidence level. The cor-
relation is even stronger when considering MDR TC count and AEW count residuals

(Figure 6.18b), significant at the 95% confidence level, with a coefficient of determi-
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(a) Atlantic TC Residual vs. AEW Residual

(b) MDR TC Residual vs. AEW Residual
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Figure 6.18: Scatterplots of average annual (ASO) TC count residuals versus AEW
count residuals, detrended by Atlantic GPI, for (a) all Atlantic TCs, and (b) only
TCs that formed in the MDR.

nation of R? = 0.981 and a p-value of p = 0.0097. To be fair, it would be surprising
if AEW count did not provide skill beyond the Atlantic GPI in explaining MDR TC
count, since MDR TC count is expected to scale with MDR GPI, which responded
differently to the albedo changes than the basin-wide GPI (recall Figure 6.12a and
b). On the other hand, it is notable that AEW count seems to provide statistically
significant additional skill beyond Atlantic GPI in explaining total TC count, since
Atlantic GPI is expected to correlate closely with total TC count by design.
Similarly, AEW and TC counts are detrended by MDR GPI and the residuals
are plotted in Figure 6.19. Although it does not make a great deal of physical sense
to detrend basin-wide TC counts by MDR GPI, this is shown for completeness in
Figure 6.19a. There is no detectable correlation between Atlantic TC count and
AEW count detrended by MDR GPI (R? = 0.552, p = 0.26). On the other hand, even
though MDR GPI explains over 97% of the variance in MDR TC count, AEW and
MDR TC count residuals detrended for MDR GPI (Figure 6.19b) have an impressive
coefficient of determination (R? = 0.994, p = 0.0032), significant with over 95%

confidence.
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(a) Atlantic TC Residual vs. AEW Residual  (b) MDR TC Residual vs. AEW Residual
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Figure 6.19: Scatterplots of average annual (ASO) TC count residuals versus AEW
count residuals, detrended by MDR GPI, for (a) all Atlantic TCs, and (b) only TCs
that formed in the MDR.

The above evidence suggests that AEW count may indeed provide additional skill
beyond the state of the large-scale environment in explaining the climatologically
average annual TC count in the uniform albedo simulations. To strengthen this

argument, the components of GPI are considered separately below in Section 6.2.2.

6.2.2 Considering GPI Components Separately

Following similar procedures as above in Section 6.2.1, residuals were considered for
all favorability indicators detrended by GPI, for both the MDR and the basin-wide
averages. Of AEW count, absolute vorticity, relative humidity, potential intensity,
and vertical wind shear (see Section 2.2.1 for definition of GPI and its components),
the AEW count residuals are the only residuals to show significant correlation with
TC count residuals.

The intra-simulation variance in each of the indicators of favorability is also com-
pared directly to that of TC count, MDR TC count, and AEW count, and the co-
efficients of determination and p-values are shown in Table 6.1 for the basin-wide

averages. Statistical significance at the 95% confidence level is denoted with an aster-
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isk, and following the correlation with the total GPI value (which was also discussed
in the opening of this section above, Section 6.2), the large-scale environmental com-
ponents are listed in order of decreasing importance. The coefficients of determination
and p-values for the total TC count are shown in bold, since averaging indicators of
large-scale environmental favorability over the entire Atlantic basin makes them the
most relevant.

Table 6.1: Linear Correlation between Atlantic GPI Components and Counts

Total TC Count | MDR TC Count AEW Count
| Component of GPI R’ |p-value| R? |p-value| R? |p-value

Total Atlantic GPI 0.974* | 0.013 | 0.871 0.067 | 0.874 0.065
Relative Humidity ‘H 0.979%* 0.010 0.882 0.061 0.878 0.063
Wind Shear Viear 0.933%* 0.034 | 0.945%* 0.028 0.964* 0.018

Potential Intensity Vo | 0.909* | 0.046 | 0.975* | 0.013 | 0.987* | 0.007
Absolute Vorticity n 0.493 0.298 | 0.359 0.401 | 0.394 0.372
* asterisk denotes statistically significant with 95% confidence

The relative humidity exhibits the strongest covariance, even compared with the
total GPI, although the confidence intervals overlap with those of GPI. Notably,
while all the other components of GPI (humidity, shear, and potential intensity)
show statistically significant correlation with total TC count, the absolute vorticity
shows no correlation with TC or AEW counts.

Similar to Table 6.1, intra-simulation variance for indicators of favorability aver-
aged over just the MDR are compared to count variance in Table 6.2. This time, the
coefficients of determination and p-values for the MDR TC count are shown in bold,
since averaging indicators of large-scale environmental favorability over the MDR
makes these most relevant. Statistical significance at the 95% confidence level is de-
noted with an asterisk, and following the correlation with the MDR GPI value (which
was also discussed above in Section 6.2) the large-scale environmental components are

listed in order of decreasing importance.
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Table 6.2: Linear Correlation between MDR GPI Components and Counts

Total TC Count | MDR TC Count AEW Count
| Component of GPI R’ [p-value| R? [p-value| R? |[p-value
Total MDR GPI 0.921* | 0.040 | 0.973* | 0.014 | 0.986* | 0.007
Relative Humidity H 0.950* | 0.025 | 0.829 0.089 | 0.821 0.094
Absolute Vorticity 7 0.898 0.052 | 0.742 0.139 | 0.739 0.140
Potential Intensity Vo | 0.554 0.256 0.351 0.408 | 0.344 0.414
Wind Shear Vipear 0.041 0.798 | 0.000 0.998 | 0.000 0.994
* asterisk denotes statistically significant with 95% confidence

With the exception of MDR GPI, none of the individual indicators of large-scale
favorability in the MDR show statistically significant covariance with MDR TC count.
Relative humidity comes closest, with a 95% confidence interval of -0.404 < R <
0.998. Due to the small sample size, correlations must be very strong in order to
achieve statistical significance with so few degrees of freedom. Similar to Section 6.2.1,
detrending AEW and TC counts for MDR relative humidity in place of GPI, the
residual AEW and TC counts exhibit statistically significant covariance, both for
MDR TC count (R? = 0.987, p = 0.007) and total TC count (R* = 0.993, p = 0.003).

It is not possible to determine whether any of these large-scale environmental
favorability measures could be contaminated by the TCs or AEWs themselves, which
could account for a portion of the covariance between the indicators of favorability
and the TC activity, but AEW count has again been shown to add additional skill.
Although not presented in detail above, regardless of which large-scale favorability
factor is chosen to detrend for environmental impacts, AEW and TC count residuals
show statistically significant positive correlation, either for MDR totals, the entire
basin, or both. This is taken a step further in the next section, in which stepwise
linear models are constructed using environmental favorability metrics and AEW

count as predictors for TC counts.
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6.2.3 Multiple Linear Regression of TC Count

Since the above sections demonstrate that AEW count, GPI, and the components of
GPTI all covary with climatological TC count across the uniform albedo suite of sim-
ulations, and there is evidence that AEW count provides skill above and beyond the
environmental factors, the focus of this section is quantifying this level of skill using
multiple linear regression. When given the option of all possible predictors, AEW
count, and both MDR and basin-wide GPI, relative humidity, potential intensity,
shear, and absolute vorticity, a stepwise linear regression model chooses only AEW
count for the MDR TC count predictand, and both relative humidity (RH) and AEW
count for the basin-wide TC count predictand.

As mentioned above in the opening of Section 6.2, the coefficient of determination
for a linear model of MDR TC count versus AEW count is R? = 0.998, with a
corresponding p-value of p = 0.0012. Although other predictors show correlation with
MDR TC count individually, AEW count alone is the best predictor of climatological
MDR TC count across these uniform albedo simulations. For the total Atlantic TC
count, a linear model of the form TC ~ 1 + RH + AEW yields an adjusted R? =
0.99997, with p = 0.0034. The coefficients of the resulting linear model are discussed
in Section 7.2. For reference, relative humidity alone yields an adjusted R? = 0.969
(p = 0.010) and the AEW count alone yields an adjusted R? = 0.933 (p = 0.023).
The p-value to accept AEW count as an additional predictor in the stepwise model
is p = 0.015, which demonstrates that AEW count provides a statistically significant

improvement over relative humidity alone.

6.3 Summary

In this chapter, the annual climatological AEW count and the large-scale environ-

ment are successfully manipulated far beyond climatological variation through the
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alteration of African albedo. Somewhat surprisingly, the model is not very sensitive
to the gradient in surface albedo found between the Sahara and the rainforest to its
south, as a simulation with a uniform surface albedo of 30% over Africa produces
results very similar to the control simulation with realistic albedo. However, there
are strong sensitivities to the magnitude of the uniform albedo. These sensitivities
are exploited to produce novel regimes and determine to what extent changes in TC
count between these regimes might be attributed to changes in AEW count.

The suite of four uniform albedo simulations generally exhibit increased AEW ac-
tivity and increased environmental favorability with increasing albedo. The changes
to the large-scale environment are similar to what is expected when transitioning
from a “wet mode” to a “dry mode” over western Africa. Although somewhat spec-
ulative, it seems that anomalous cooling, caused by greater reflectance of insola-
tion in the northern hemisphere, shifts the I'TCZ southward due to the return flow
of the anomalous Hadley circulation, leading the AEJ to also shift southward and
strengthen, producing more AEWs.

Although there are only four simulations in the uniform albedo suite, there is a sta-
tistically significant linear relationship between AEW count and TC count. However,
there is also a statistically significant relationship between measures of environmen-
tal favorability and TC count, including GPI, relative humidity, vertical wind shear,
and potential intensity. While GPI is commonly used as an indicator of favorabil-
ity, e.g., in Caron and Jones (2011), it is an imperfect measure and there might be
other environmental factors at play that could be forcing AEWs and TCs to covary.
It is also possible that some of the measures of environmental favorability could be
contaminated by TCs or AEWs themselves and this could account for a portion of
the covariance, but through detrending and through stepwise linear regression, AEW
count still shows additional skill over the metrics used here to diagnose the large-scale

environment.
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Chapter 7

Considering All Modeled Results
Holistically

The relationship between AEWs and TCs in HIRAM is probed in various ways in
Chapters 4 through 6, on multiple timescales and using a variety tools to isolate
the importance of the AEW activity and separate it from the effects of the large-
scale favorability on TC activity. Chapter 4 examines the climatological simulations,
comparing the interannual relationship between AEW count and TC count in the
model to the historical relationship determined in Chapter 3 from NCEP-NCAR II
Reanalysis and IBTrACS, using ENSO phase and annual trends as a lens into inter-
annual changes in the large-scale environment historically. In Chapter 5, the internal
variability in the AEW-TC relationship is isolated by considering the interannual
variation in the perturbation from the climatological ensemble mean, and analyzing
control and perpetual La Nina simulations with interannually invariant SSTs. Fi-
nally, in Chapter 6 the relationship between AEW count and TC count is considered
on a climatological rather than interannual timescale, using GPI and its components
as indicators of the large-scale favorability in climates drastically different from the
present.

All of the simulations discussed throughout Chapters 4 through 6 are considered
together here, including all experiments: the climatological simulations (H1, H2, and

H3), the control and perpetual La Nina simulations, and the four uniform albedo
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simulations. This is done to both show consistency between and to extend the re-
sults from the preceding chapters. First, the relationship between AEW count and
TC count is considered interannually, as totals from every model year are examined
(Section 7.1). Next, this relationship is considered climatologically, as average annual
counts from each simulation are examined (Section 7.2). Following this comprehen-
sive assessment of the model results, the major findings are summarized briefly in

Section 7.3.

7.1 The Interannual Relationship between AEW
and TC Count

While each individual simulation does reveal statistically significant positive interan-
nual correlation between AEW count and TC count, the associated lines of best fit
are not well-constrained due to relatively small sample sizes, since the simulations
discussed in Chapters 4 through 6 were either 20 or 28 years long and exhibit marked
interannual variability. Section 5.1.2 is an exception, since there were 84 model years
pooled together, as perturbations from the climatological ensemble mean were consid-
ered to evaluate the stochastic component of AEW activity. In general, the correlation
coefficient between AEW count and TC count is consistently positive with 90% or
greater confidence for each individual simulation, but the slope and intercept of the
line of best fit varies drastically between simulations. For this reason, all model years
are pooled across simulations here, to better quantify and constrain the interannual
relationship between AEW and TC count.

In Section 4.4 and 4.5, it is apparent that ENSO phase as diagnosed by SST
anomalies (see Appendix B) correlates with TC activity on interannual timescales
in the climatological simulations, but all additional model runs (the control simula-

tion, the perpetual La Nifia simulation, and the uniform albedo simulations) have
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climatologically invariant SSTs, and therefore ENSO cannot be used as an indicator
of interannual variability of large-scale favorability for these simulations. Section 6.2
indicates that relative humidity in the mid-troposphere is a useful measure of cli-
matological large-scale favorability in drastically different climates, but as Bruyere
et al. (2012) show, GPI and relative humidity do not correlate well with TC activity
interannually and thus may not adequately represent environmental favorability on
these timescales.

In the absence of a convincing interannual measure of environmental favorability
across all suites of simulations, the relationship between AEW count and TC count
is considered here, without explicitly regressing out the effects of ENSO, GPI, or oth-
erwise accounting for potential large-scale influences. This differs from Section 5.1.2,
where the variance is explicitly separated into the part due to environmental variabil-
ity and the stochastic component in the climatological ensemble. Figure 7.1 includes
the annual (ASO) TC count versus the annual AEW count for every model year of
every simulation, for a total of N = 204 model years.

Although the various simulations do not all share similar large-scale environments,
the correlation between annual TC and AEW count across simulations is extremely
significant, with R? = 0.395 and p = 8.5 x 1072* (see Figure 7.1). In other words,
about 40% of the variance in annual TC count in HIRAM simulations is explained by
annual AEW count variability, although a portion of this is associated with changes in
large-scale variability that affect both AEW and TC count (see Section 5.1.2). Least

squares regression returns the following line of best fit:

TC = 1.60 + 0.51 - AEW, (7.1)

where TC is the annual number of TCs, and AEW is the annual number of AEWSs in

August through October.
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Figure 7.1: Scatterplot of annual August through October TC count versus AEW
count, for every model year of every simulation discussed in any of the previous chap-
ters, including the climatological simulations (H1, H2, and H3), the control simula-
tion, the perpetual La Nina simulation, and the uniform albedo simulations (uniform
albedo 1, 2, 3, and 4), for a total of 204 model years. The shading of the dots indi-
cates the number of years with the given number of TCs and AEWSs, ranging from
one (light gray) to nine (black), with line of best fit plotted in black.

AEWSs are not completely absent in any model year, but Equation 7.1 implies that
if there were no AEWSs in the model, there would be an average of 1.60 TCs annu-
ally. Further, for each additional AEW, there would be an average of 0.51 additional
TCs annually, due to a combination of the stochastic variability in AEW count itself
and covariation of AEW and TC counts forced by the environment. The analysis in
Section 5.1.2 reveals that each AEW above and beyond the average number, purport-
edly determined by the large-scale environment, has approximately a 1 in 4 chance
of developing into a TC. Applying this finding to the present analysis suggests that

about half of the influence of AEW count on TC count is mediated by environmental
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favorability (0.51-0.25=0.26), while the other half may be due to stochastic AEW
variance.

Applying Equation 7.1 to “predict” climatological TC counts given climatologi-
cal AEW counts compares favorably with the climatological simulation average TC
counts and the reanalysis-derived historical record. With the average number of
AEWSs varying annually between 13.32 and 14.14 for the three climatological ensem-
ble members, using Equation 7.1, one would expect between 8.39 and 8.81 TCs per
year. This is within the error bars of the climatological ensemble members’ annual TC
counts, for which there are actually between 9.07 and 9.36 TCs, and interannual vari-
ability results in a 95% confidence interval of £0.90 (see Figure 4.2). Although Equa-
tion 7.1 provides a reasonable fit for climatologically average AEW and TC counts
in simulations with climates similar to the present day, this relationship breaks down
when applied to the perpetual La Nina and the highest uniform albedo simulation
on a climatological timescale. This is likely because the changes to the large-scale
environment are more drastic in these cases, and thus the influence of environmental
favorability is more important than the interannual relationship between AEW and
TC count.

Like Figure 7.1, Figure 7.2 also includes the annual (ASO) TC count versus the
annual AEW count for every model year of every simulation, but partitioned by TC
origin type, with African TC counts in Figure 7.2a and non-African TC counts in
Figure7.2b. The lines of best fit for African TC count and non-African TC count

versus AEW count are given by:

African TC = 0.124 0.45 - AEW, and (7.2)

Non-African TC = 1.48 4+ 0.06 - AEW, (7.3)
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where African TC is the annual number of TCs that have their origins in AEWs,
Non-African TC is the annual number of TCs that do not have African origins of any
kind, and AEW is the annual number of AEWs in August through October.

Annual non-African TC count is only very weakly correlated with AEW count,
with a coefficient of determination of R? < 0.02, which is significantly positive at
the 90% but not 95% confidence level, with p = 0.059. The shallow slope evident
in Figure 7.2b and Equation 7.3 (for every additional AEW, one would only expect
an average of 0.06 additional non-African TCs annually), demonstrates that AEW
variability has little net influence on the number of TCs without African origins.
There are a number of possible competing factors at play, including environmental
favorability and trade-offs with African TC development. However, there is no cor-
relation between non-African TC count and African TC count interannually across
simulations (R = -0.01, p = 0.78).

Elevated AEW activity could potentially increase the total number of TCs, while
also decreasing the fraction or number of TCs that do not have African origins.
Although not ubiquitously (the perpetual La Nina simulation being a potential ex-
ception), increased environmental favorability is typically associated with an increase
in the climatologically average level of AEW activity across simulations, so one might
expect a significant positive relationship between AEW counts and any subset of TC
counts, mediated by large-scale conditions. On the other hand, the impacts of chang-
ing AEW activity and environmental favorability on TC formation are not spatially
uniform, as shown in Figure 6.8. In Kossin and Vimont (2007), shifts in cyclogen-
esis regions are shown to affect the overall number of storms. This is likely due to
differences in the local environments as well as proximity to suitable seeds, such as
AEWSs. As is clear from Figure 4.8, African and non-African TC origin points are not

concentrated in the same areas and thus are not necessarily responding to the same
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environmental influences, which may contribute to the lack of correlation between the
two.

Because all TCs are either African or non-African, the slopes and intercepts of
the lines of best fit for African TC count versus AEW count (Equation 7.2) and non-
African TC count versus AEW count (Equation 7.3) sum to that for the total TC
count versus AEW count (Equation 7.1). As evident in Equations 7.2 and 7.3, the
vast majority of the increase in TC count associated with increasing AEW count can

be attributed to storms that have African origins.

7.2 The Climatological Relationship between
AEW and TC Count

The major results originally described in Section 6.2.3 are applied here to assess
whether the findings from the uniform albedo suite explain the climatological average
AEW and TC counts in all of the simulations explored in Chapters 4 through 6.
Figure 7.3 shows the average annual (ASO) TC count versus the average annual AEW
count for each simulation, including error bars denoting 95% confidence intervals on
both counts, which give an indication of the level of interannual variability within
each simulation.

Unfortunately, pooling all of the simulations together in this fashion does not pro-
vide new insight above and beyond the conclusions drawn from the uniform albedo
simulations alone in Chapter 6, because there is strong overlap in the AEW and TC
count error bars for the climatological simulations, the control simulation, the perpet-
ual La Nina simulation, and two of the uniform albedo simulations (See Figure 7.3).

The multiple linear regression in Section 6.2.3 yields the following model:
TC =4.1340.80- (RH — RH,) + 0.56 - AEW, (7.4)
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where TC is the average annual number of TCs in August through October, RH is
the basin-wide climatologically average August through October relative humidity at
600 mb in percent, RH. is RH for the control simulation, and AEW is the average
annual number of AEWs in August through October.

Even though constructed using only the uniform albedo simulations, Equation 7.4
provides a good fit for the climatologically average counts in all simulations. The
TC counts predicted by Equation 7.4 exhibit strong correlation with the actual TC
counts in the simulations, with R? = 0.933 and p = 1.7 x 1073. Although it is clear
that environmental favorability, as communicated through relative humidity, plays an
important role in determining average TC count in HIRAM, the direct relationship
between AEW count and TC count itself in Figure 7.3 is striking. Correlating the
climatologically average TC counts and the AEW counts across simulations yields a
coefficient of determination of R? = 0.918 (p = 2.6 x 107?).

Equation 7.4 implies that if relative humidity is the same as in the control simula-
tion and there are no AEWS, there would still be an average of 4.13 TCs per year. This
is greater than the corresponding value from the interannual regression (the intercept
of Equation 7.1), perhaps due to the implicit connection between AEW count and
relative humidity. If Atlantic relative humidity and AEW count are linked to some
degree, it would be unlikely to have zero AEWs without a corresponding decrease in
relative humidity. This would lead to fewer than 4.13 TCs per year in the limiting
case with zero AEWs. While this interpretation may strengthen the argument that
AEW count and relative humidity covary, this does not imply that the AEW-TC re-
lationship is necessarily fully determined by environmental favorability. As discussed
in Sections 6.2.2 and 6.2.3, AEW count does indeed provide additional information
beyond the large-scale environment as diagnosed by Atlantic basin relative humidity.

All else equal, Equation 7.4 also implies that the number of additional TCs ex-

pected for a climate with an average increase of one AEW per year is 0.56. This
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Figure 7.3: Scatterpot of climatologically average annual August through October
TC count versus AEW count for the reanalysis-derived historical record and for each
of the simulations discussed in any of the previous chapters, including the climato-
logical simulations (H1, H2, and H3), the control simulation, the perpetual La Nina
simulation, and the uniform albedo simulations (uniform albedo 1, 2, 3, and 4). Error
bars denote 95% confidence intervals.

compares well with the results from the interannual analysis in Section 7.1, in which
Equation 7.1 implies that there would be an average of 0.51 additional TCs annually
for each additional AEW. In both cases, a portion of this number is likely mediated by
changes in environmental favorability, but as argued in Section 7.1 using the analysis
from Section 5.1.2, as much as half of the influence of AEW count on TC count may

be due to stochastic AEW variance.

7.3 Summary

In this chapter, the simulations examined in Chapters 4 through 6 are considered
together as a comprehensive unit, showing consistency between simulations and ex-

tending key results discussed in earlier chapters. Count totals from every model year
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are examined to quantify the interannual relationship between AEW count and TC
count, and climatological averages from each simulation are examined to quantify the
contribution of relative humidity and AEW count in determining average TC count.

Without correcting for the effects of the environmental favorability, on average 1
in 2 AEWSs contribute an additional TC annually across simulations, due to a combi-
nation of stochastic interannual variability in AEW count itself and the covariation
between AEW and TC count forced by the environment. Considering this together
with the result from Section 5.1.2, that each AEW above and beyond the number
determined by the large-scale environment has a 1 in 4 chance of developing into
a TC in the climatological simulations, suggests that about half of the influence of
AEW count on TC count is mediated by environmental favorability and half is due
to stochastic AEW variability in the model. Further, almost all of the net change in
TC count associated with AEW count changes can be attributed to storms that have
African origins. AEW variance has very little net effect on the number of storms that
do not have origins associated with AEWs.

The result originally described in Section 6.2.3, the multiple linear regression
model of TC count with relative humidity and AEW count serving as predictors
for the uniform albedo simulations, shows skill when applied to the climatologically
average AEW and TC counts across simulations. Unfortunately, the addition of
the climatological, control, and perpetual La Nina simulations does not provide new
insight above and beyond the original result, since there is strong overlap in AEW
and TC count error bars. Comparing this climatological model (Equation 7.4) to
the interannual model (Equation 7.1) provides further evidence that AEW count and
relative humidity covary, but that AEW count provides additional skill over basin-

wide average relative humidity in predicting climatologically average TC count.
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Chapter 8

Conclusion

The major findings of this study are summarized briefly in Section 8.1, followed by
possible directions for future work in Section 8.2. It is argued that the evidence pre-
sented strongly supports the notion that not only does African easterly wave (AEW)
activity exhibit variance on interannual and climatological timescales that is corre-
lated with Atlantic tropical storm (TC) activity variance, but the relevance of AEW

count to TC count is not exclusively determined by large-scale environmental factors.

8.1 Summary

After reviewing the state of the field and motivating the study of the relationship be-
tween AEW and TC variability in Chapter 1, novel analysis techniques were designed,
tested, and justified in Chapter 2, based on the current literature. The historical
AEW record was then revisited, applying these analysis techniques to NCEP-NCAR
IT reanalysis in Chapter 3, comparing updated AEW counts with past studies and
examining potential explanations for differences. In Chapter 4, this newly-developed
historical record was used to legitimize the Geophysical Fluid Dynamic Laboratory’s
(GFDL’s) High Resolution Atmospheric Model (HiIRAM) for the study of the re-
lationship between AEWs and TCs, comparing an ensemble of three climatological

simulations to the historical record.
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The model was then used to isolate the internal variability of AEW activity in
Chapter 5, both by taking advantage of the multiple historical realizations produced
by the climatological suite of simulations and by examining additional simulations
forced by interannually invariant prescribed sea surface temperature (SST), includ-
ing a control simulation with climatologically average SSTs and a perpetual La Nina
simulation with composite SSTs from strong La Nina years (see Appendix B). In
Chapter 6, the large-scale environment was drastically altered through the manipula-
tion of African albedo, and the resulting climatologies were examined to disentangle
the effects of environmental favorability and AEW activity levels on TC activity.
Finally, the results from the various simulations were analyzed comprehensively in
Chapter 7, on both interannual and climatological timescales. The key results per-
taining to the relationship between AEWs and Atlantic TCs from Chapters 3 through
7 are highlighted and synthesized here.

The AEW historical record produced with the current methodology as applied
to NCEP-NCAR 1II reanalysis does not exhibit statistically significant correlation
with any past studies of the interannual variability of AEW count and its potential
relationship with TC count (Avila et al., 2000; Thorncroft and Hodges, 2001; Hop-
sch et al., 2007). This is not surprising, as none of the past studies correlate with
each other. Upon further scrutiny, these past studies do not agree on total annual
AEW count, the degree of AEW variability, or the relationship between AEW and
TC counts. The methodology employed in the present study is more robust than in
past studies, in that the present techniques are designed to target and count relevant
AEWSs that originate over Africa and make it to the MDR. This methodology also
links individual AEWs and TCs, strengthening the argument that there is a causal
relationship between AEW and TC count, rather than simply a similar degree of
variance in two independent fields giving the illusion of a relationship. It is heart-

ening that the reanalysis-derived historical record developed with the novel analysis
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techniques employed here shows good agreement with the seasonal cycle and spectral
statistics of AEW activity put forth in past studies and with modeled-derived AEW
activity in climatological HHRAM simulations.

The historical AEW count record derived from NCEP-NCAR II reanalysis ex-
hibits marked interannual variability and statistically significant correlation with TC
count. Although such a relationship between AEWs and TCs has been suggested by
others in the literature (e.g., Thorncroft and Hodges, 2001), this is the first rigorous
quantitative evidence of such a linkage. The correlation between AEW and TC count
is slightly weaker in the model-derived than in the reanalysis-derived historical record,
but is still significant. When minimizing the confounding influence of environmental
favorability by subtracting the effects attributed to ENSO phase and annual trend
from the counts, the AEW residuals explain a statistically significant amount of the
TC residual interannual variability, namely, 10% in the climatological simulations and
40% in the reanalysis-derived historical record.

The climatological ensemble of HIRAM simulations shows reasonable agreement
with the reanalysis-derived AEW record overall, producing average annual AEW and
TC counts that are indistinguishable from the historical record. The ensemble aver-
age model-derived AEW counts covary with the reanalysis-derived historical counts
interannually, but the individual ensemble members do not exhibit statistically sig-
nificant correlation with reanalysis-derived historical AEW variability. On the other
hand, both ensemble average and the individual ensemble member model-derived TC
counts correlate well with the reanalysis-derived historical TC counts. This implies
that AEW activity is at least partially determined by the prescribed SST, but to
a lesser extent than TC activity, so a significant portion of the AEW variability is
independent of the large-scale forcing.

Since ensemble averaging helps isolate the effects of the large-scale forcing, the

interannual variability of the model-derived historical AEW and TC counts may be
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separated into environmental fluctuations (the ensemble mean) and stochastic vari-
ability (the perturbation from the ensemble mean). These perturbation AEW and
TC counts are well-correlated interannually for the climatological ensemble members.
Although much of the TC variability is constrained by the favorability of the large-
scale conditions, this supports the idea that variability in AEW count may explain the
component of the TC variability that remains unexplained by known environmental
factors. Specifically, a linear regression model of perturbation TC count reveals that
an average of one in four additional AEWSs, above and beyond the average determined
by environmental factors, contributes an additional TC.

Another way to examine the importance of AEW variability above and beyond
that determined by the large-scale favorability is by examining simulations forced
by interannually invariant SSTs. In these cases, there simply is no interannual vari-
ability in the forcing, minimizing the associated variation of the large-scale environ-
ment. Both a control and a perpetual La Nina simulation with seasonally varying
but interannually invariant forcing exhibit covariance between AEW and TC counts
on interannual scales, demonstrating that there is significant internal variability in
AEW activity in the atmosphere, and that this internal AEW variability has rele-
vance to TC variability beyond the covariance in both due to large-scale forcing as
communicated through the prescribed SSTs.

Although AEW count and TC count covary interannually to a degree beyond what
would be expected due to environmental forcing alone, the large-scale environment
can be more important than the number of AEWs in determining the climatologi-
cally average number of TCs that form annually, as evidenced by the control and the
perpetual La Nina simulations. These two simulations have statistically significantly
different climatologically average TC count, despite having statistically indistinguish-

able average AEW counts. This increase in TC activity is associated with an increase
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in the genesis potential index (GPI; Emanuel and Nolan, 2004) in the Atlantic due
to La Nina.

This interplay between large-scale favorability and AEW activity level in deter-
mining the climatologically average TC count is examined further through a suite of
four simulations with prescribed uniform albedo over Africa. Through the alteration
of the magnitude of the uniform African albedo, the environmental favorability and
AEW activity is varied significantly beyond the range naturally occurring in the cur-
rent climate on interannual scales. Both the large-scale favorability as determined
by GPI and the AEW count generally increase with increasing albedo, as the model
exhibits behavior similar to that expected in a transition from a “wet mode” to a “dry
mode” over western Africa. There is a statistically significant relationship between
both GPI and climatological TC count, as well as climatological AEW count and
TC count in the uniform albedo simulations. Statistical tests show that AEW count
demonstrates additional skill over, and is not simply responding to, the environmen-
tal changes that also affect TC count, as communicated by GPI and its components,
absolute vorticity, relative humidity, potential intensity, and vertical wind shear.

Across both the reanalysis-derived historical record and all model simulations,
there is a statistically significant correlation between AEW count and TC count.
Considering AEW and TC count totals from every model year across all simulations,
without correcting for the effects of differences in large-scale favorability, an average
of approximately 1 in 2 AEWSs contribute an additional TC annually. This effect
can be partitioned into the part due to the covariation between AEW and TC count
that is forced by the environment, and the stochastic variability of AEW count itself.
Since the latter accounts for approximately 1 in 4 AEWs contributing an additional
TC annually, it seems that about half of the influence of AEW count on TC count
stems from covariation due to environmental favorability, and half due to internal

AEW variability.
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Given the results of interannual and climatological detrending, multiple linear re-
gression models, and ensemble averaging, it is unlikely that the relationship between
AEW count and TC count is simply controlled by the large-scale environmental favor-
ability. AEWs seem to play an active role in determining TC count, as the internal
atmospheric variability in AEW count explains a component of the TC variability

unexplained by known indicators of environmental favorability.

8.2 Future Work

The rich datasets developed here to determine whether AEWSs influence Atlantic
TC activity contain several yet unexplored facets, such as regional impacts on TC
genesis, landfall potential, TC strength, and the percent of African TCs. With the
principal relationship between AEWs and TCs newly established, these datasets could
be applied to address a great number of secondary research questions.

It is argued above that the stochastic component of AEW count provides skill
above and beyond what can be easily deduced from the large-scale environmental
favorability, both in the reanalysis-derived historical record and in the model, war-
ranting further study of the sources of this AEW variability. Coupled with the re-
sults presented here, a better understanding of the physical mechanisms at work in
determining AEW activity level would have applications in TC predictability. Ana-
lyzing fluctuations in the modeled African Easterly Jet on various timescales, both
its strength and location, could be an interesting starting point.

In any study of AEW activity, the length of the observational record is a severely
limiting factor, necessitating the use of modeling techniques for some applications.
Unfortunately, since the correlation between AEW count and TC count is found to
be weaker in HIRAM than in the historical record produced using NCEP-NCAR II

and IBTrACS, the model may not capture the full extent of the AEW variability and
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the associated TC variability in the real world. If AEWs are resolvable, it would be
useful to corroborate and possibly extend the reanalysis-derived historical record pro-
duced here, perhaps using the Twentieth Century Reanalysis (20CR) from Compo
et al. (2011). The 20CR dataset exclusively assimilates surface-based observations
of sea level pressure and temperature (SLP and SST), eliminating the observational
biases inherent in upper-level observations and providing a longer record with fewer
assimilation discontinuities than contemporary reanalyses. Comparing with the his-
torical record produced here using NCEP-NCAR 11, the trade-off in surface-only data
assimilation could be evaluated to determine whether 20CR would be a useful tool
for studying AEW variability. More generally, it would be productive to compare
multiple reanalyses, to better constrain the level of uncertainty in historical AEW
variability, establish whether there is an overall trend in AEW count, and evaluate
the fidelity of the climatological HIRAM simulations.

As well as applying the present analysis techniques to multiple reanalyses, it would
also be telling to use multiple genesis potential indices to corroborate or qualify the
conclusions drawn above. Using multiple measures of environmental favorability could
strengthen the argument that AEW count does indeed influence TC activity, exhibit-
ing skill above and beyond the state of the large-scale environmental conditions.
Systematic study of measures of genesis potential and their constituent components
could also provide insight on the potential level of contamination in these metrics,
diagnosing the extent to which AEW and TC activity itself might influence measures
of the large-scale favorability.

Finally, it would be useful to either use an extended reanalysis-derived historical
record or to produce additional simulation years to better ascertain the typical level of
AEW activity in La Nina conditions, as well as in El Nifio conditions. Although there
was no statistically significant difference in AEW count in the simulation forced with

composited La Nina SSTs and the simulation forced with climatologically average
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SSTs, there may have been a difference that was simply too small to detect. This

could have implications for the results presented about the relevance of ENSO phase.
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Appendix A

Some Useful Acronyms

The following acronyms are used throughout this dissertation.

AEW
AEJ
AEJx
AEJg
AGCM
AM2.1
AMIP-II
AMMA
AOS
AR5
BRDF
DOE
ECMWF
ENSO
EOF
ERA-40

ERA-Interim

GARP
GATE
GCM
GFDL
GPI
HadISST

HEART
HiRAM

African Easterly Wave

African Easterly Jet

Northern African Easterly Jet (see Figure 1.1)

Southern African Easterly Jet (see Figure 1.1)

Atmospheric General Circulation Model

Atmospheric Model v 2.1 from GFDL (Anderson et al., 2004)
Atmospheric Model Intercomparison Project

African Monsoon Multidisciplinary Analyses

Atmospheric and Oceanic Sciences

The Fifth Assessment Report of the IPCC

Bidirectional Reflectance Distribution Function

Department of Energy

European Centre for Medium-Range Weather Forecasts

El Nino-Southern Oscillation

Empirical Orthogonal Functions

European Centre for Medium-Range Weather Forecasts (ECMWF)
Reanalysis (Uppala et al., 2005)

European Centre for Medium-Range Weather Forecasts (ECMWF)
Reanalysis (Dee et al., 2011)

Global Atmospheric Research Program

GARP Atlantic Tropical Experiment (Kuettner, 1974)

General Circulation Model

NOAA’s Geophysical Fluid Dynamics Laboratory

Genesis Potential Index (Emanuel and Nolan, 2004)

Hadley Centre Global Sea Ice and Sea Surface Temperature Dataset
(Rayner et al., 2003)

Hard Equations and Rational Thinking

High Resolution Atmospheric Model from GFDL
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IBTrACS

IPCC
ITCZ
MDR
MJO
MODIS
MPI
NAMMA

NASA
NCAR
NCEP
NCEP-NCAR 1

NCEP-NCAR II

NOAA
OLR
ONI

SAL
SST
TC

TEJ
WAWJ

International Best Track Archive for Climate Stewardship (Knapp
et al., 2010)

Intergovernmental Panel on Climate Change

Intertropical Convergence Zone

Main Development Region

Madden-Julian Oscillation

MODerate Resolution Imaging Spectroradiometer

Maximum Potential Intensity (Bister and Emanuel, 2002)

National Aeronautics and Space Administration (NASA) African
Monsoon Multidisciplinary Analyses (AMMA) (Zipser et al., 2009)
National Aeronautics and Space Administration

National Center for Atmospheric Research

National Centers for Environmental Prediction

National Centers for Environmental Prediction (NCEP)-National
Center for Atmospheric Research (NCAR) Reanalysis (Kalnay et al.,
1996)

National Centers for Environmental Prediction (NCEP)-Department
of Energy (DOE) Atmospheric Model Intercomparison Project
(AMIP II) Reanalysis (Kanamitsu et al., 2002)

National Oceanic and Atmospheric Administration

Outgoing Longwave Radiation

Oceanic Nino Index (NOAA/NWS Cold and Warm Episodes by Sea-
son, 2014)

Saharan Air Layer

Sea Surface Temperature

Tropical Cyclone; all intensities of cyclones detected by the tracking
algorithm are included (see Section 2.2.2), and are referred to inter-
changeably as “tropical storms” and “TCs,” regardless of strength

Tropical Easterly Jet

West African Westerly Jet
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Appendix B

ENSO Classification

The Oceanic Nifio Index (ONI) consists of a three-month running average of SST
anomalies in the region from 5°S to 5°N and 120°W to 170°W (NOAA/NWS Cold
and Warm Episodes by Season, 2014). ONI is used to classify years by ENSO phase
throughout this dissertation and is partially reproduced here. Relevant ONI values
for June through August (JJA), July through September (JAS), August through
October (ASO), and September through November (SON) are shown below, along
with the average of these four values (JJASON Average), for the years 1967 through
2012 (although no individual simulation or historical study spans the entire period).

Years from historical simulations and past studies are classified based on the JJA-
SON Average; years in which the JJASON Average is greater than 0.5 are considered
El Nifo years (e.g., 1982, 1986, 1987, 1991, 1994, 1997, 2002, 2004, 2006, 2009);
years in which the JJASON Average is less than -0.5 are considered La Nina years
(e.g., 1985, 1988, 1995, 1998, 1999, 2000, 2007, 2010, 2011). The JJASON Average
is also used for multiple regressions that include ENSO phase as a predictor (e.g.,
Sections 3.2.4 and 4.5).

The La Nina composite for the perpetual La Nina simulation (see Section 2.1.2
and Chapter 5) was produced from years after 1982 for which the ONI index for
both JAS and ASO is less than -0.5 (i.e., 1985, 1988, 1998, 1999, and 2000). This
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was finalized before this version of ONI and the associated JJASON averages were

considered, but is compatible with the definitions given here.

] Year ‘ JJA ‘ JAS ‘ ASO ‘ SON ‘ JJASON Average ‘ ENSO Phase ‘

1967 | 0.1 | -0.1 | -0.3 | -0.3 -0.2
1968 | 0.4 0.5 0.5 0.6 0.5 El Nino
1969 | 0.5 0.5 0.8 0.9 0.7 El Nino
1970 | -0.5 | -0.7 | -0.7 | -0.7 -0.7 La Nina
1971 | -0.7 | -0.7 | -0.7 | -0.8 -0.7 La Nina
1972 | 1.1 1.4 1.6 1.9 1.5 El Nino
1973 | -1.0 | -1.2 | -1.3 | -1.6 -1.3 La Nina
1974 | -05 | -04 | -04 | -0.6 -0.5 La Nina
1975 | -1.1 | -1.2 | -14 | -1.5 -1.3 La Nina
1976 | 0.2 0.4 0.6 0.7 0.5 El Nino
1977 | 0.4 0.4 0.4 0.7 0.5 El Nino
1978 | -0.3 | -04 | -04 | -0.3 -0.4
1979 | 0.0 0.2 0.3 0.5 0.3
1980 | 0.3 0.1 -0.1 0.0 0.1
1981 | -04 | -04 | -0.3 | -0.2 -0.3
1982 | 0.7 1.0 1.5 1.9 1.3 El Nino
1983 | 0.2 | -0.2 | -0.5 | -0.8 -0.3
1984 | -0.3 | -0.2 | -0.3 | -0.6 -0.4
1985 | -0.5 | -0.5 | -0.5 | -04 -0.5 La Nina
1986 | 0.3 0.5 0.7 0.9 0.6 El Nino
1987 | 14 1.6 1.6 1.5 1.5 El Nino
1988 | -1.3 | -1.2 | -1.3 | -1.6 -1.4 La Nina
1989 | -0.3 | -0.3 | -0.3 | -0.3 -0.3
1990 | 0.3 0.3 0.4 0.3 0.3
1991 | 0.8 0.7 0.7 0.8 0.8 El Nino
1992 | 0.3 0.0 | -0.2 | -0.3 -0.1
1993 | 0.3 0.2 0.2 0.2 0.2
1994 | 0.4 0.4 0.5 0.7 0.5 El Nino
1995 | -0.2 | -04 | -0.7 | -0.8 -0.5 La Nina
1996 | -0.2 | -0.3 | -0.3 | -0.3 -0.3
1997 | 1.5 1.8 2.1 2.3 1.9 El Nino
1998 | -0.7 | -1.0 | -1.2 | -1.3 -1.1 La Nina
1999 | -1.0 | -1.1 | -1.1 -1.3 -1.1 La Nina
2000 | -0.6 | -0.5 | -0.6 | -0.6 -0.6 La Nina
2001 | 0.0 0.0 | -0.1 -0.2 -0.1
2002 | 0.8 0.8 0.9 1.2 0.9 El Nino
2003 | 0.2 0.4 0.4 0.4 0.4
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] Year ‘ JJA ‘ JAS ‘ ASO ‘ SON ‘ JJASON Average ‘ ENSO Phase

2004 | 0.5 0.7 0.8 0.7 0.7 El Nino
2005 | 0.2 0.1 0.0 -0.2 0.0
2006 | 0.2 0.3 0.5 0.8 0.5 El Nino
2007 | -04 | -0.6 | -0.8 | -1.1 -0.7 La Nina
2008 | -0.3 | -0.2 | -0.1 -0.2 -0.2
2009 | 0.5 0.6 0.8 1.1 0.8 El Nino
2010 | -09 | -1.2 | -14 | -1.5 -1.3 La Nina
2011 | -0.2 | -04 | -0.6 -0.8 -0.5 La Nina
2012 | 0.1 0.4 0.5 0.6 0.4
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